Copyright
Copyright © 2009 Thermo Fisher Scientific Corporation. First edition published in 2008. All rights reserved. Printed in Finland. Reproduction of the accompanying user documentation in whole or in part is prohibited.

Patents
This product is protected by the following patent: US 6111636, Device for Measuring Optical Density.

Trademarks
“Immulon”, “Microtiter”, “Multiskan” and “SkanIt” are registered trademarks of Thermo Fisher Scientific.

All other trademarks and registered trademarks are the property of their respective holders.

Disclaimer
Thermo Fisher Scientific reserves the right to change its products and services at any time to incorporate technological developments. This manual is subject to change without prior notice as part of a continuous product development. Although this manual has been prepared with every precaution to ensure accuracy, Thermo Fisher Scientific assumes no liability for any errors or omissions, nor for any damages resulting from the application or use of this information. This manual supersedes all previous editions.

No liability for consequential damages
Thermo Fisher Scientific shall not be liable for any damages whatsoever arising out of the use or inability to use this product.

Power failure
The system requires uninterrupted power supply in order to operate correctly. Thermo Fisher Scientific has no responsibility whatsoever for system malfunctions arising from power failures.
About This User Manual

Intended users
The Multiskan FC, as standalone or with SkanIt Software, can be used in research and routine-test laboratories by professional personnel.

How to use this user manual
This user manual is for the following instruments, Multiskan FC/Multiskan FC with incubator: Cat. no. 51119000, 51119020, 51119050, 51119100, 51119120 and 51119150. It has been designed to give you the information you need to:

- Review safety precautions
- Install the Multiskan FC
- Navigate and edit in the Multiskan FC user interface
- Make a protocol and measure
- Perform basic cleaning and maintenance procedures
- Troubleshoot the instrument performance

This user manual also describes all the features and specifications of the Multiskan FC instrument as well as ordering information.

Read the manual in its entirety before operating the instrument.

Keep the user manual for future reference. The user manual is an important part of the instrument and should be readily available during use of the instrument. Keep the user manual together with the instrument in case you distribute it onwards.

For more information
For PC software-related issues, refer to the *Thermo Scientific SkanIt Software for Multiskan FC User Manual* (Cat. no. N07713).

For the latest information on products and services, visit our websites at:

http://www.thermo.com
http://www.thermo.com/readingroom

In an effort to produce useful and appropriate documentation, we appreciate your comments on this user manual to your local Thermo Fisher Scientific representative.
Safety symbols and markings

These symbols are intended to draw your attention to particularly important information and alert you to the presence of hazards as indicated.

The following symbols and markings appear on the type label and the instrument itself.

- **Power ON** ▲
- **Power OFF** ▲
- **Serial number** ▲
- **Catalog number** ▲
- **Date of manufacture** ▲
- **Consult instructions for use** ▲
- **WEEE symbol** This product is required to comply with the European Union’s Waste Electrical & Electronic Equipment (WEEE) Directive 2002/96/EC. ▲

A black label with the following text (Figure 3–10 on page 21):

CAUTION: **WARNING:** **DISCONNECT SUPPLY BEFORE SERVICING** and **AVERTISSEMENT:** **COUPER L'ALIMENTATION AVANT L'ENTRETIEN ET LE DEPANNAGE.** ▲
Warning and other markings used in the documentation

The following symbols and markings appear in this user manual.

- **Warning** Risk of electric shock.
- **Warning** Biohazard risk.
- **Warning** Hot surface, risk of burns.
- **Warning** Risk of injury to the user(s).
- **Caution** Risk of damage to the instrument, other equipment or loss of performance or function in a specific application.
- **Note** Marks a hint, important information that is useful in the optimum operation of the system, or an item of interest.
Contents

Intended users ... 3
How to use this user manual .. 3
For more information .. 3
Safety symbols and markings .. 4
 Safety symbols and markings used on the Multiskan FC 4
 Warning and other markings used in the documentation 5

Chapter 1 Introduction to the Multiskan® FC 11
 Intended use .. 12

Chapter 2 Installation .. 13
 What to do upon delivery .. 13
 How to unpack ... 13
 Checking delivery for completeness or damage 13
 Environmental requirements ... 14
 Installation setups ... 14
 Releasing the transport lock .. 14
 Installing the filter wheel .. 16
 Connecting the power supply cable 17
 Connecting to a computer ... 18
 Connecting to a printer ... 18
 Switching on ... 18
 Performing the operational check 18
 Settings after installation .. 19
 Installation of SkanIt Software for Multiskan FC 19

Chapter 3 Multiskan FC Main Parts .. 21
 Front view ... 21
 Back view ... 21
 Side view .. 22
 USB memory stick port .. 22
 Optical system ... 23
 Incubator .. 24
 Shaker ... 24
 Internal memory .. 24

Chapter 4 Operating the Internal Software 25
 Display and keys for navigating and editing 25
 Keys / Action .. 25

Chapter 5 Menus and Parameters .. 29
 Main menu ... 29
 Protocol .. 31
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate format parameters</td>
<td>32</td>
</tr>
<tr>
<td>Measurement parameters</td>
<td>33</td>
</tr>
<tr>
<td>Filters</td>
<td>33</td>
</tr>
<tr>
<td>Measurement modes</td>
<td>33</td>
</tr>
<tr>
<td>Shaking parameters</td>
<td>34</td>
</tr>
<tr>
<td>Incubation parameters</td>
<td>34</td>
</tr>
<tr>
<td>Processing menu</td>
<td>35</td>
</tr>
<tr>
<td>Plate layout parameters</td>
<td>35</td>
</tr>
<tr>
<td>Preprocessing parameters</td>
<td>37</td>
</tr>
<tr>
<td>Precalculations</td>
<td>39</td>
</tr>
<tr>
<td>Kinetic calculations</td>
<td>40</td>
</tr>
<tr>
<td>Calculation parameters</td>
<td>47</td>
</tr>
<tr>
<td>Curve fits</td>
<td>48</td>
</tr>
<tr>
<td>Factor</td>
<td>50</td>
</tr>
<tr>
<td>Stored curve</td>
<td>50</td>
</tr>
<tr>
<td>Interpretation parameters</td>
<td>50</td>
</tr>
<tr>
<td>Source data</td>
<td>52</td>
</tr>
<tr>
<td>Interpretation and limits</td>
<td>52</td>
</tr>
<tr>
<td>Quality control parameters</td>
<td>53</td>
</tr>
<tr>
<td>Results menu</td>
<td>54</td>
</tr>
<tr>
<td>Raw data</td>
<td>55</td>
</tr>
<tr>
<td>Calculated results</td>
<td>56</td>
</tr>
<tr>
<td>Calibration curve</td>
<td>56</td>
</tr>
<tr>
<td>Quality control (QC)</td>
<td>57</td>
</tr>
<tr>
<td>Results in list format</td>
<td>57</td>
</tr>
<tr>
<td>Settings menu</td>
<td>58</td>
</tr>
</tbody>
</table>

Chapter 6
Starting Ready-made Protocols ... 61
Starting a ready-made protocol with the quick keys (F1-F3)........... 61
Starting a ready-made protocol from the list.............................. 62

Chapter 7
Protocol Creation Examples .. 65
Opening a new protocol ... 65
Programming a wavelength ... 65
Programming shaking ... 66
Programming incubation ... 66
Programming a plate layout .. 68
Programming calculations and interpretations 71
Programming precalculations ... 71
Programming calculations ... 72
Programming an interpretation .. 73
Adding a QC rule to the protocol .. 75
Saving a new (active) protocol ... 76

Chapter 8
Viewing Results .. 79
Viewing results ... 79

Chapter 9
Printing, Exporting and Importing ... 81
Contents

Chapter 16
- **Ordering Information** ... 115
 - List of filters .. 115
 - List of spare parts and accessories .. 116
 - List of Thermo Scientific plates ... 116
 - Verification tools ... 117

Appendix A
- **System Log** .. 119

Appendix B
- **Certificate of Decontamination** ... 121
Chapter 1
Introduction to the Multiskan® FC

The Multiskan FC (Figure 1-1) is a high-quality filter-based microplate photometer. It is used to measure absorbance from appropriate 96 or 384-well plate formats in the wavelength range of 340 to 850 nm. Optional incubation up to 50°C can be used. The instrument also allows shaking. The instrument has a sophisticated internal software. It can also be connected to Thermo Scientific SkanIt Software for Multiskan FC. Furthermore, the Multiskan FC can be connected to plate handling devices.

The Multiskan FC is available in the following configurations:

- Multiskan FC
 - 96-well plate reading with internal shaking
- Multiskan FC with incubator
 - 96 and 384-well plate reading with shaking and incubation

Figure 1-1. Multiskan FC microplate photometer
Intended use

The Multiskan FC is a microplate photometer for measuring absorbance from suitable microplates and strips in 96-well plate formats and optionally microplates in 384-well plate formats that meet the ANSI/SBS standards.

The Multiskan FC, as standalone instrument or with SkanIt Software, can be used in research or routine-test laboratories by professional personnel.

The Multiskan FC is part of an analyzing system for the end user who is thus responsible for validation of the whole system for producing reliable and safe results.

If the assay performance is essential for the analysis, the test result has to be ensured with internal quality controls or with an alternative test.

It is encouraged to use Good Laboratory Practices (GLP) during the analyzing process.

Use for self-testing is excluded.

Caution Operate the instrument only with software and hardware specifically designed or selected for it. Thermo Fisher Scientific assumes no liability for the use of third-party software applications.
Chapter 2
Installation

This chapter describes the installation setups of the Multiskan FC instrument.

⚠️ **Warning** The Multiskan FC weighs 8.5 kg [18.7 lbs.] and care must be taken when lifting it.

What to do upon delivery

This section covers the relevant procedures to be carried out upon arrival of the instrument.

How to unpack

Move the packed instrument to its site of operation. To prevent condensation, the instrument should be left in its protective plastic wrapping until the ambient temperature has been reached. Unpack the Multiskan FC instrument and accessories carefully with the arrows on the transport package pointing upwards. Place the instrument onto a laboratory bench.

⚠️ **Caution** Do not touch or loosen any screws or parts other than those specifically designated in the instructions. Doing so may cause misalignment and will void the instrument warranty.

Retain the original packaging for future transportation. The packaging is designed to assure safe transport and minimize transit damage. Use of alternative packaging materials may invalidate the warranty. Also retain all instrument-related documentation provided by the manufacturer for future use.

If you relocate your instrument or ship it for service, refer to “How to pack for service” on page 105.

Checking delivery for completeness or damage

Check the enclosed packing list against order. Visually inspect the transport package, the instrument and the accessories for any possible transport damage. If any parts are missing or damaged, contact your local Thermo Fisher Scientific representative or Thermo Fisher Scientific Oy.
Environmental requirements

When you set up your Multiskan FC, avoid sites of operation with excess dust, vibrations, strong magnetic fields, direct sunlight, draft, excessive moisture or large temperature fluctuations. Make sure:

- the working area is flat, dry, clean and vibration-proof, and leave additional room for cables, covers, and so on
- the ambient air is clean and free of corrosive vapors, smoke and dust
- the ambient temperature range is between +10°C (50°F) and +40°C (104°F)
- the humidity is low so that condensing does not occur (relative humidity is between 10% and 80%, non-condensing).

Caution Do not operate the instrument in an environment where potentially damaging liquids or gases are present.

Installation setups

This section describes the installation setups that have to be carried out before instrument operation.

Releasing the transport lock

The instrument comes with a transport lock.

Caution Make sure the transport lock has been released before you put the instrument into operation.

To release the transport lock, follow these steps:

1. Open the lamp and filter wheel chamber cover (Figure 2–2).

Figure 2–2. Transport lock (inside the instrument) and transport lock tag
2. Unfasten the transport lock bar counterclockwise using the Allen key supplied (Figure 2–3).

![Figure 2–3. Unfastening the transport lock](image)

3. Pull the transport lock bar out (Figure 2–4).

![Figure 2–4. Pulling the transport lock out](image)

4. Keep the transport lock bar and tag (Figure 2–5 on page 16) for future relocation or transportation of the instrument.
Installing the filter wheel

To install the filter wheel, follow these steps:

1. Unpack the filter wheel (Figure 2–6). It is delivered in a filter wheel box. Check that all filters are clean and undamaged.

Caution
Do not touch the filters with your bare hands. ▲

Caution
When installing the filter wheel, do not touch any other mechanical or electronic part. ▲
2. Place the filter wheel into the filter slot so that the filter wheel numbers (1-8) face outwards (Figure 2–7). A magnet locking mechanism will automatically lock the wheel in the correct position and the optical filter position sensor will make sure the correct filter is used during measurement.

![Figure 2–7. Placing the Multiskan FC filter wheel into the filter wheel slot.](image)

If the filter wheel seems to be "jumping" in the filter wheel slot, you have inserted the wheel incorrectly and the magnet is rejecting it. Turn the wheel over.

3. Close the lamp and filter wheel chamber cover.

To connect the power supply cable, follow these steps:

Warning Never operate your instrument from a power outlet that has no ground connection. Never use a power supply cable other than the Thermo Scientific power supply cable designed for your region.

1. Ensure that the ON/OFF switch (Figure 2–8 on page 18) at the back of the instrument is in the OFF (O) position.

2. Connect the power supply to a correctly installed line power outlet that has a protective conductor that is grounded.

3. Connect the power supply cable to the power input socket (Figure 2–8 on page 18) at the back of the instrument.
Connecting to a computer

If you are using a computer with the Multiskan FC, connect the communication cable to the USB port for the computer (Figure 2–8).

Connecting to a printer

If you are using a printer, connect it to the USB port for the printer (Figure 2–8). The external USB printer protocol that can be used is HP PCL5.

Switching on

Check that all the cables are properly fitted according to the installation instructions. Switch the instrument ON.

Caution 1) Do not switch the power off during “Performing self diagnostics”. 2) Do not plug/unplug the printer cable during Importing/Exporting data from/to the USB memory stick. 3) Do not plug/unplug the USB memory stick during “Printing” or “Performing self diagnostics”.

Performing the operational check

Before you take the instrument into use, make time to perform the following operational check:

1. Switch the instrument ON.

2. Check that the plate carrier comes out from the instrument and the “Self diagnostics passed” text is shown for a while on the display.
3. Press the **START** button twice.

4. Check that the plate carrier moves in and the measurement chamber door closes properly.

The instrument starts the measurement. After the measurement the plate carrier comes out. No error messages should appear on the display.

5. Press the **F2** key to close the result table.

6. Press the **Left** arrow key twice to return to the **Main** menu.

Settings after installation

If you want to change the language or add additional filters to the filter wheel, modify the required settings in the **Settings** menu. Refer to the instructions in “Settings menu” on page 58.

Installation of SkanIt Software for Multiskan FC

For installing SkanIt Software for Multiskan FC, refer to the *SkanIt Software for Multiskan FC User Manual* (Cat. no. N07713).

The instrument has one computer interface: USB.

When the instrument is connected to SkanIt Software, the “Remote mode active” text is shown on the display.

The **STOP** button on the keypad can be used to terminate the computer remote control.
Installation
Installation of SkanIt Software for Multiskan FC
Chapter 3
Multiskan FC Main Parts

This chapter describes the main parts of the Multiskan FC instrument.

Front view

The front view of the Multiskan FC instrument is shown in Figure 3–9.

![Multiskan FC front view](image)

Back view

The back view of the Multiskan FC instrument is shown in Figure 3–10.

![Multiskan FC back view](image)
Multiskan FC Main Parts

Side view

The side view of the Multiskan FC instrument is shown in Figure 3–11.

![Multiskan FC side view](image)

Figure 3–11. Multiskan FC side view

USB memory stick port

The instrument is equipped with a USB port for an external memory stick (Figure 2–8 on page 18). You can transfer measurement data to the PC and assay protocols from an instrument to another with the USB memory stick.
Optical system

The optical system of the Multiskan FC instrument comprises the following components (Figure 3–12):

Light source

The light source is a quartz-halogen lamp (Osram 64222, 6V/10W). The lamp is normally off between measurements to prolong the service life – the lamp switches on for the measurement.

Interference filters

The filter is a special interference filter. The wavelength is selected from one to eight filters held in the filter wheel.

Fiber

The fiber is flexible, quartz fiber.

Fiber end optics

Fiber end optics produces a highly focused light beam, which passes through the well to the detector.

Detector housing

The detector housing consists of a silicon photodetector, an amplifier and lens optics.

Signal processing

The measurement electronics employed has very low noise and a wide dynamic range.

Autoblanking

The dynamic autoblanking procedure ensures that the lamp can be off between measurements. This will lengthen the lifetime of the lamp.

Figure 3–12. Optical system

Autocalibration

The lamp intensity in the Multiskan FC instrument is regulated to be suitable for each filter during startup. This adjustment procedure is called autocalibration.
Incubator

The optional incubator is only available with the Multiskan FC with incubator model. The incubator chamber consists of thermal elements on the top and bottom of the incubator chamber. The upper electrical thermal element prevents condensation on the microplate that is being incubated.

Background incubation is also possible during kinetic measurements. The incubation temperature ranges from 25 to 50°C (max.).

Warning The incubator thermal plates may be hot. ▲

Shaker

The linear shaker operates at three different speeds (Table 3–1):

Table 3–1. Shaking speeds

<table>
<thead>
<tr>
<th>Speed name</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow</td>
<td>5 Hz, amplitude 15 mm</td>
</tr>
<tr>
<td>Medium</td>
<td>11 Hz, amplitude 3 mm</td>
</tr>
<tr>
<td>Fast</td>
<td>20 Hz, amplitude 1 mm</td>
</tr>
</tbody>
</table>

Background shaking is also possible during kinetic measurements.

Internal memory

There is memory for 99 assay protocols and at least assay results for 100 microplates.
Chapter 4
Operating the Internal Software

This section describes the display and keys on the keypad for navigating and editing the internal software of the Multiskan FC instrument.

The keypad and display are shown in Figure 4–13.

Figure 4–13. Keypad and display of the Multiskan FC

Keys / Action

The relevant keys for navigating and editing are described in detail below. The keys also have other functions depending on the level in the internal software.

The active row is colored blue.
Operating the Internal Software
Display and keys for navigating and editing

Use the **Left**, **Right**, **Up** and **Down** arrow keys to navigate. You can speed up the selection by holding down the arrow key continuously.

Use the **OK** button to select and edit the highlighted item. It is mostly used for setting and accepting the active parameter.

Use the character keys to enter numerical data and text.
- SPACE CHARACTER (space): character code which prints a space
- PERIOD (·): decimal point
- PLUS SIGN (+): operator
- MINUS SIGN (−): operator
- SLASH SIGN (/): operator
 - () and µ are found under the 1 / key.

Use the **CLEAR** (C) key to delete written text or numbers.

Use the **F1-F3** keys to select the corresponding action from the info text bar (Figure 4–14). The information on the info text bar is updated according to the active menu.

<table>
<thead>
<tr>
<th>Info text bar</th>
<th>Protocol 1</th>
<th>Protocol 2</th>
<th>Protocol 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function button</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4–14. Info text bar of the Multiskan FC user interface

In the **Main** menu, the **F1-F3** function keys are reserved for ready-made protocols. Demonstration protocols, Demo1-Demo3 (for example, single measurement, kinetic measurement, dual endpoint measurement), are set for quick selection (**F1-F3** keys).

You can change the protocols for the **F1-F3** keys with the **FILE** key in the protocol list view.

Press the **FILE** key, for example, for saving the active protocol in the **Main** menu. Depending on the level of the internal software, the **FILE** key opens a list of actions possible for the current protocol: **New**, **Save**, **Save as**, **Export**, **Export all protocols**, **Import**, **Print** and **Delete**.

Use the **HELP** for viewing more detailed instructions.
Press the **PLATE in/out** button to move the plate carrier in or out.

Press the **START** button to start microplate reading using the currently selected protocol.

Press the **STOP** button to terminate the reading process. Data from the plate in progress is lost. It can also be used to terminate the possible computer remote control.
Operating the Internal Software
Display and keys for navigating and editing
Chapter 5
Menus and Parameters

This section describes the menus and the relevant main parameters of the internal software for creating and editing protocols.

The internal software includes the Main, Processing, Results and Settings menus.

The user menu layout is displayed in Table 5–2.

Table 5–2. Program overview

<table>
<thead>
<tr>
<th>Main</th>
<th>Processing</th>
<th>Results</th>
<th>Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Plate layout</td>
<td>Raw data</td>
<td>System</td>
</tr>
<tr>
<td>Plate format</td>
<td>Preprocessing</td>
<td>Calculated results</td>
<td>Filters</td>
</tr>
<tr>
<td>Measurement</td>
<td>Calculation</td>
<td>Calibration curve</td>
<td>Printer</td>
</tr>
<tr>
<td>Shaking</td>
<td>Interpretation</td>
<td>Quality control</td>
<td>Startup</td>
</tr>
<tr>
<td>Incubation</td>
<td>Quality control</td>
<td>Results in list format</td>
<td></td>
</tr>
</tbody>
</table>

Main menu

You can specify the instrument-related parameters in the Main menu.

The Main menu contains the Protocol, Plate format, Measurement, Shaking and Incubation parameters.

The clock on the Main tab shows the real time.

The Incubation icon also shows the current temperature (only Multiskan FC with incubator model).

See the info text bar for the required actions of the F1-F3 keys. The action text on the info text bar changes according to the level of the internal software.

A detailed program overview of the Main menu is shown in Table 5–3.

Note The parameters of the Main menu are locked when the run (measured data) for the protocol exists. After the measurement, the plate format, measurement, shaking and incubation parameters cannot be changed. For more information, refer to Chapter 6: “Starting Ready-made Protocols”.

Table 5–3. Main parameters

<table>
<thead>
<tr>
<th>Main</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
</tr>
<tr>
<td>Plate format</td>
</tr>
<tr>
<td>Measurement</td>
</tr>
<tr>
<td>Shaking</td>
</tr>
<tr>
<td>Incubation</td>
</tr>
<tr>
<td>Protocol: Created: Modified: Runs:</td>
</tr>
<tr>
<td>96 Wells</td>
</tr>
<tr>
<td>384 Wells</td>
</tr>
<tr>
<td>Filter 1 (nm)</td>
</tr>
<tr>
<td>Filter 2 (nm)</td>
</tr>
<tr>
<td>Mode</td>
</tr>
<tr>
<td>No filter</td>
</tr>
<tr>
<td>405 (#1)</td>
</tr>
<tr>
<td>450 (#2)</td>
</tr>
<tr>
<td>620 (#3)</td>
</tr>
<tr>
<td>No filter</td>
</tr>
<tr>
<td>405 (#1)</td>
</tr>
<tr>
<td>450 (#2)</td>
</tr>
<tr>
<td>620 (#3)</td>
</tr>
<tr>
<td>Fast</td>
</tr>
<tr>
<td>Normal</td>
</tr>
<tr>
<td>No of readings (1-100)</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Mode</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Before measurement</td>
</tr>
<tr>
<td>Background</td>
</tr>
<tr>
<td>Temperature (°C)</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>25-50</td>
</tr>
<tr>
<td>Wait for warm up</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Time (hh:mm:ss)</td>
</tr>
<tr>
<td>00:00:00</td>
</tr>
</tbody>
</table>

Depending on the level of the internal software, the FILE key opens a list of actions possible for the current protocol.
Protocol

The Protocol row in the Main menu shows the name of the active protocol. You can open another protocol by pressing the OK button on the Protocol row or by pressing the FILE key. The list of protocols saved in the internal software will appear.

You can also open a particular run of the protocol in question (protocol with measured data) with the Menu function. Also the runtime is shown on the Protocol row. For more details on opening a protocol, refer to “Opening a new protocol” on page 65.

The maximum amount of protocols available is 99.

Table 5–4. Protocol structure

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Run 1</th>
<th>Run 2</th>
<th>Run 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A measured run of a protocol includes run data and protocol information for that run.

You can start the measurement of an active protocol with the name “Undefined” but the results of an “Undefined” protocol are not saved unless you save the active protocol, including the measured run data with a new name.

Note If you make any changes to the processing parameters of a measured run in the Processing menu, the changes are made to that run only. If you want to make changes to the protocol and thereby to the future runs, you must open the protocol, make the changes, and press the FILE key/Save to save the changes. ▲

Note When you press the START button, the software always loads the saved protocol, regardless of what parameters are active on the display. ▲

For instructions on how to start and create protocols, refer to Chapter 6: “Starting Ready-made Protocols” and Chapter 7: “Protocol Creation”.
You can select the plate format 96 or 384 in the Plate format window.

Note The 384 format is only available if the instrument version supports 384-well plate measurements.

The dimensions of the available plates are given in Table 5–5 and Table 5–6.

Table 5–5. 96-well plate dimensions

<table>
<thead>
<tr>
<th>96-well plate</th>
<th>Dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate height</td>
<td>14.35</td>
</tr>
<tr>
<td>Plate length</td>
<td>85.48</td>
</tr>
<tr>
<td>Plate width</td>
<td>127.76</td>
</tr>
<tr>
<td>First well position X</td>
<td>14.38</td>
</tr>
<tr>
<td>First well location Y</td>
<td>11.24</td>
</tr>
<tr>
<td>Corner distance X</td>
<td>99</td>
</tr>
<tr>
<td>Corner distance Y</td>
<td>63</td>
</tr>
</tbody>
</table>

Table 5–6. 384-well plate dimensions

<table>
<thead>
<tr>
<th>384-well plate</th>
<th>Dimension (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate height</td>
<td>14.35</td>
</tr>
<tr>
<td>Plate length</td>
<td>85.48</td>
</tr>
<tr>
<td>Plate width</td>
<td>127.76</td>
</tr>
<tr>
<td>First well position X</td>
<td>12.13</td>
</tr>
<tr>
<td>First well location Y</td>
<td>8.99</td>
</tr>
<tr>
<td>Corner distance X</td>
<td>103.5</td>
</tr>
<tr>
<td>Corner distance Y</td>
<td>67.5</td>
</tr>
</tbody>
</table>
Measurement parameters

You can define the measurement filter(s), number of readings and measurement mode in the Measurement window.

Filters

Filter 1 defines the first (main) filter. Filter 2 defines the second (reference) filter.

You can select the suitable filter from the list of available filters. You must physically install the filter into the filter wheel, as well as introduce the additional filter to the internal software of the instrument in the Settings window. Refer to “Introducing a filter to the internal software” on page 89.

Measurement modes

There are two measurement modes: Normal and Fast.

The measurement head stops on each well in the Normal measurement mode. The Normal mode produces the most accurate results with measurement times that are fast enough for most purposes.

The head moves continuously in the Fast measurement mode. The Fast mode produces fast results with a slightly narrower linear absorbance range than with the Normal mode.

Number of readings sets the number of measurements per well. One means that each well is measured only once, and two or more means that the measurement is repeated (kinetic). The number of readings can be anything between 1 and 100.

If the Number of readings is higher than 1, the measurement is considered kinetic, and the interval time between the readings must be set. Kinetic calculations can be added to the protocol.

For instructions on how to program a wavelength, for example, refer to “Programming a wavelength” on page 65.
Shaking parameters

You can define the shaking parameters in the **Shaking** window.

You can select between no shaking, shaking before measurement and background shaking.

The shaking speed can be set to *Slow*, *Medium* or *Fast*. Refer to Table 3–1 on page 24.

Background shaking is active during the intervals of kinetic measurements. The shaker shakes in sections of 5 seconds with the slow speed.

For instructions on how to program shaking, refer to “Programming shaking” on page 66.

Incubation parameters

You can define the incubation parameters, incubation time and temperature in the **Incubation** window.

Incubation is only active if the instrument is equipped with an incubator. Therefore, the Incubation icon (and row) is only visible in the **Main** menu of the instruments with an incubator indicating the present temperature.

The temperature range is from 25 to 50°C. Refer to Table 14–17 on page 109.

If **Wait for warm up** is set to *Yes*, the assay incubation is not started until the temperature is reached.

Please note that the cooling of the incubation chamber takes time. If you get the warning of “Temperature is not changing”, it means that the incubator chamber is cooling slowly. It is possible to start the run...
Despite of the warning message in case the incubation temperature is not critical for the application.

The limits for the incubation time are 00:00:00-99:59:59.

The temperature in Kelvin is calculated according to the following equation:

\[K = t + 273.16 \]

where \(K \) denotes Kelvin and \(t \) the temperature in degrees Celsius (°C).

Processing menu

You can specify the calculation parameters in the Processing menu. These parameters supplement the parameters programmed in the Main menu.

The Processing menu contains the following parameters:

- **Plate layout** (with well information)
- **Preprocessing** (for example, kinetic calculations)
- **Calculation** (for example, curve fit)
- **Interpretation** (for example, limit calculation)
- **Quality control** (rules for quality control)

See the info text bar for required actions.

Plate layout parameters

You can set the plate map of the protocol in the Plate layout window. The calculations of the results are made based on the plate layout.
Table 5–7. Processing parameters

<table>
<thead>
<tr>
<th>Processing / Plate layout</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate layout</td>
</tr>
<tr>
<td>Well: A1 Name: EMPTY</td>
</tr>
<tr>
<td>Well type</td>
</tr>
<tr>
<td>Blank</td>
</tr>
<tr>
<td>Calibrator</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Unknown</td>
</tr>
<tr>
<td>Empty</td>
</tr>
<tr>
<td>Fill direction</td>
</tr>
<tr>
<td>Down</td>
</tr>
<tr>
<td>Right</td>
</tr>
<tr>
<td>Replicate direction</td>
</tr>
<tr>
<td>Down</td>
</tr>
<tr>
<td>Right</td>
</tr>
<tr>
<td>Number of Replicates</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>Number of Replicates</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Depending on the level of the internal software, the FILE key opens a list of actions possible for the current protocol.

You can start filling the plate layout on any of the wells of the plate. You start the fill procedure from the well marked with a blue square. You can start filling a series of samples by pressing the OK button in the highlighted well. You can edit and delete a single well with the Edit function.

Note Blank subtraction is made automatically if the plate layout includes blanks. The blank used in the calculations is always an average of the blanks included in the layout.

You can determine the sample type in Well type. The sample types are Blank, Calibrator, Control, Unknown or Empty.
Note The results will not be calculated for the Empty sample type. ▲

Note The calibrator concentrations are programmed in the Plate layout window. You can define calibrator concentrations when you create a calibrator series or activate a single calibrator. A calibration concentration of 0 is not accepted. ▲

Fill direction can be either to the right or downwards from the active well in the Plate layout window.

Fill replicate direction can be either the same or different from the fill samples direction in the Plate layout window.

You can define the number of samples belonging to the group, for example, the number of different calibrators or the number of different unknown samples in Number of. You define the number of replicates for each sample type in Replicate.

Note The Replicate number is the same for samples, for example, for different controls when using Add series starting from the well programming. Use the F3 (Edit) key to program each sample individually, if a different replicate number for the samples are needed. ▲

When filling the plate with the Add series function, note that adding a group of samples of the same type to another location will delete the first group. If you want to add the same well type into several separate locations on the plate layout, use the Edit function.

For instructions on how to program the plate layout, refer to “Programming a plate layout” on page 68.

Preprocessing parameters

You can define the preprocessing parameters in the Preprocessing window.

Preprocessing includes two different types of data processing: precalculations and kinetic calculations.
Preprocessing is used with dual (two wavelength) measurements and kinetic measurements, for example, to subtract the reference wavelength data in dual measurements or to reduce data for kinetic measurements in kinetic calculations.

Table 5–8. Processing / Preprocessing parameters

<table>
<thead>
<tr>
<th>Processing / Preprocessing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preprocessing</td>
</tr>
<tr>
<td></td>
<td>Pre-Calculation</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Mea1 – Mea2</td>
</tr>
<tr>
<td></td>
<td>Mea1 / Mea2</td>
</tr>
<tr>
<td></td>
<td>Mea1 + Mea2</td>
</tr>
<tr>
<td></td>
<td>Mea1 * Mea2</td>
</tr>
<tr>
<td></td>
<td>Mea2 – Mea1</td>
</tr>
<tr>
<td></td>
<td>Mea2 / Mea1</td>
</tr>
<tr>
<td></td>
<td>Kinetic</td>
</tr>
<tr>
<td></td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Average rate</td>
</tr>
<tr>
<td></td>
<td>Kinetic rate</td>
</tr>
<tr>
<td></td>
<td>/s</td>
</tr>
<tr>
<td></td>
<td>/min</td>
</tr>
<tr>
<td></td>
<td>Ignore from beginning</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ignore from end</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Maximum rate</td>
</tr>
<tr>
<td></td>
<td>Kinetic rate</td>
</tr>
<tr>
<td></td>
<td>/s</td>
</tr>
<tr>
<td></td>
<td>/min</td>
</tr>
<tr>
<td></td>
<td>Ignore from beginning</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ignore from end</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Window</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Reaction</td>
</tr>
<tr>
<td></td>
<td>Undefined</td>
</tr>
<tr>
<td></td>
<td>Increasing</td>
</tr>
<tr>
<td></td>
<td>Decreasing</td>
</tr>
<tr>
<td></td>
<td>Time to maximum rate</td>
</tr>
<tr>
<td></td>
<td>Kinetic rate</td>
</tr>
<tr>
<td></td>
<td>/s</td>
</tr>
<tr>
<td></td>
<td>/min</td>
</tr>
<tr>
<td></td>
<td>Ignore from beginning</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ignore from end</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Continued
Processing / Preprocessing

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window</td>
<td>0</td>
</tr>
<tr>
<td>Reaction</td>
<td>Undefined</td>
</tr>
<tr>
<td>Time to change</td>
<td>Increasing</td>
</tr>
<tr>
<td>Baseline readings</td>
<td>100</td>
</tr>
<tr>
<td>Readings from</td>
<td>Beginning</td>
</tr>
<tr>
<td>Change</td>
<td>0.00</td>
</tr>
<tr>
<td>Change type</td>
<td>Absolute</td>
</tr>
<tr>
<td>Maximum of well</td>
<td>Ignore from beginning</td>
</tr>
<tr>
<td>Time to maximum</td>
<td>Ignore from beginning</td>
</tr>
</tbody>
</table>

Depending on the level of the internal software, the **FILE** key opens a list of actions possible for the current protocol.

Precalculations

Precalculation is used in the context of dual (two wavelength) measurements when Filter 1 (main filter) and Filter 2 (reference filter) are defined in the **Main** menu.

The purpose of the precalculation is to merge the data from the two measurements into one data set, which can then be further processed, for example, using kinetic calculations or a curve fit.
The most common example of precalculation is the subtraction of the reference wavelength, where absorbance values of Measurement 2 (measured with Filter 2) is subtracted from the absorbance values of Measurement 1 (measured with Filter 1). Also the sum, multiplication and ratio precalculations between the absorbance values of Measurement 1 (measured with Filter 1) and the absorbance values of Measurement 2 (measured with Filter 2) are available:

<table>
<thead>
<tr>
<th>No.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mea1 - Mea2</td>
<td></td>
</tr>
<tr>
<td>Mea1 / Mea2</td>
<td></td>
</tr>
<tr>
<td>Mea1 + Mea2</td>
<td></td>
</tr>
<tr>
<td>Mea1 * Mea2</td>
<td></td>
</tr>
<tr>
<td>Mea2 - Mea1</td>
<td></td>
</tr>
<tr>
<td>Mea2 / Mea1</td>
<td></td>
</tr>
</tbody>
</table>

Kinetic calculations

Kinetic calculations can be used when the number of readings is more than 1 in the measurement parameters (see Measurement parameters on page 33). Also the results of a kinetic calculation can be used as source data for further calculations.

The available kinetic calculation types are:

- Average rate
- Maximum rate
- Time to maximum rate
- Time to change
- Maximum of well
- Time to maximum

Average rate

Average rate is also known as normal rate. The average kinetic rate (slope of the absorbance (Abs) vs. time curve) is calculated by linear regression (linear least squares method or LLS) using all the measurement readings within the selected raw data and time range.

You can define the following settings:
● **Kinetic rate** – Select to view the results in either seconds (s) or minutes (min). The Kinetic rate is always calculated per second but if you select per minute, the time is automatically converted to minutes after the calculations.

● **Ignore from beginning** – Ignores a defined number of points (readings), counted from the first reading.

● **Ignore from end** – Ignores a defined number of points (readings), counted from the last reading.

Maximum rate

If the maximum rate is selected, the software searches the data for the maximum rate found in each well. To obtain the maximum rate, a series of linear curve fits will be performed for different segments of the measurement value, absorbance vs. time curve (Figure 5–15). The first segment starts at the first data point within the selected time and measurement range, the second segment starts at the second data point, and so on, until all the data points have been analyzed. All the rate calculations are evaluated to determine the maximum rate. In other words, the LLS fit of \(m \) span points are sequentially fitted through each of the \(n \) data points. There will be \(n - m + 1 \) curves produced from this. You can specify the number of data points in a segment with the **Window** setting.
You can define the following settings:

- **Reaction** – Define whether the reaction is supposed to produce increasing or decreasing signal levels. There are three options for this setting:

 - **Undefined** (default) – The reaction can be increasing, decreasing or both (for example, first increase and then decrease, that is, peaking). The software does not produce any warnings in either case. It searches for the absolute maximum rate. If the highest absolute rate value is increasing, it is shown as a positive number. If the maximum rate is decreasing, it will be presented with the prefix “-”.

 - **Increasing** – The software searches for the maximum increasing rate. The rate is shown as a positive number. If no increasing rate is found, the result is “NaN” (not a number).

 - **Decreasing** – The software searches for the maximum decreasing rate. The rate is shown as a positive number. If no decreasing rate is found, the result is “NaN” (not a number).
- **Kinetic rate** – Select to view the results in either seconds (s) or minutes (min). The kinetic rate is always calculated per second but if you select per minute, the time is automatically converted to minutes after the calculations.

- **Ignore from beginning** – Ignores a defined number of points (readings), counted from the first reading.

- **Ignore from end** – Ignores a defined number of points (readings), counted from the last reading.

- **Window** – Select the number of consecutive readings to use for evaluation. The highest reaction rate for each well is calculated using a sliding window. A window defines how many measurement points are included in the measurement calculations. The size of this window is given in the Window parameter box. For example, if the number of measurements is ten and the Window parameter is three, the system will calculate the first rate using the measurements 1 to 3, the second rate using the measurements 2 to 4, and so on up to measurements 8 to 10. The maximum rate will be the maximum value among these calculated rates.

Time to maximum rate

The time to maximum rate is calculated similarly to the maximum rate, but the result is reported as the time in seconds from the first reading to the point on the line where the maximum rate occurs instead of the rate itself. Refer to Figure 5–16 on page 43.

![Figure 5–16. Determining the time to maximum rate](image-url)
You can define the following settings:

- **Reaction** – Define whether the reaction is supposed to produce increasing or decreasing signal levels. There are three options for this setting:
 - **Undefined** – Searches for the absolute maximum rate, and returns the corresponding time.
 - **Increasing** – Searches for the maximum increasing rate and returns the corresponding time. If no increasing rate is found, the result is “NaN” (not a number).
 - **Decreasing** – Searches for the maximum decreasing rate, and returns the corresponding time. If no decreasing rate is found, the result is “NaN” (not a number).

- **Ignore from beginning** – Ignores a defined number of points (readings), counted from the first reading.

- **Ignore from end** – Ignores a defined number of points (readings), counted from the last reading.

- **Window** – The number of consecutive readings to use for evaluation.

Time to change

The time to change is used for calculating the time required to reach a defined change in the signal (in each well). The time is given in seconds or minutes from the first reading.

First define the base value by entering the number of readings from the start in baseline. The base value is the average of results of the given baseline count from the beginning or end of results. Then select whether the change from the base value is evaluated as a relative (%) or an absolute value and define that percentage or value. This change is then added to the base value to create a required change value. The average of the sliding window is compared to the limit. The result is the exact interpolated time where the given change occurs.
You can define the following settings:

- **Ignore from beginning** – Ignores a defined number of points (readings), counted from the first reading.

- **Ignore from end** – Ignores a defined number of points (readings), counted from the last reading.

- **Window** – The number of consecutive readings to use for evaluation.

- **Reaction** – Define whether the reaction is supposed to produce increasing or decreasing signal levels. There are three options for this setting:
 - **Undefined** – Searches for the defined change in signal, regardless of the rate polarity (positive or negative), and returns the corresponding time.
 - **Increasing** – Searches for the increasing defined change in signal, and returns the corresponding time. If no increasing rate is found, the result is “NaN” (not a number).
 - **Decreasing** – Searches for the decreasing defined change in signal, and returns the corresponding time. If no decreasing rate is found, the result is “NaN” (not a number).

- **Baseline readings** – The Baseline readings parameter is the number of initial readings, calculated from the beginning (first) or end (last) of the measurement, used for the baseline calculation. The baseline can also be zero, which means that the comparison will be made against zero. In the Baseline readings the software chooses as many measurement points as exist in the baseline and calculates the mean thereof. The mean equals the baseline value. If last is selected, the change is searched starting from the end of the measurement.

- **Readings from** – There are two options for this setting: **Beginning** (default) or **End**.

- **Change** – The change in signal is specified and compared to the baseline.

- **Change type** – The relative change from the baseline in percent or the absolute change. The default is **Absolute**.
Maximum of well

The maximum of well is used to search for the maximum measurement value in each well.

You can define the following settings:

- **Ignore from beginning** – Ignores a defined number of points (readings), counted from the first reading.
- **Ignore from end** – Ignores a defined number of points (readings), counted from the last reading.

Time to maximum

The time to maximum is used to calculate the time elapsed before the maximum measurement signal in each well is reached.

You can define the following settings:

- **Ignore from beginning** – Ignores a defined number of points (readings), counted from the first reading.
- **Ignore from end** – Ignores a defined number of points (readings), counted from the last reading.
Calculation parameters

You can define the calculation parameters in the *Calculation* window. The available calculation types are: *curve fits* and *factor*.

You can select different calibrator curve fit types for quantitative calculation or a factor. You can also use a stored curve for quantitative calculation.

Note: Blank subtraction is made automatically if the plate layout includes blanks. The blank used in the calculations is always an average of the blanks included in the layout.

Note: The plate layout must include calibrators to enable them for further calculations, for example, curve fits. Refer to “Curve fits” on page 48.

![Table of Calculation parameters]

<table>
<thead>
<tr>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear regression</td>
</tr>
<tr>
<td>Four parameter logistic</td>
</tr>
<tr>
<td>Cubic spline</td>
</tr>
<tr>
<td>Point to point</td>
</tr>
<tr>
<td>Factor</td>
</tr>
</tbody>
</table>
Table 5–9. Processing parameters / Calculation

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Depending on the level of the internal software, the FILE key opens a list of actions possible for the current protocol.

Curve fits

The curve fits types of the calibrators are:

- Linear regression
- Four parameter logistic
- Cubic spline
- Point to point
Linear regression
Linear regression is a term usually reserved for the simple linear model involving a response, \(y \), that is, a continuous variable and a single explanatory variable, \(x \), related by the equation
\[
y = a + bx
\]
where \(y \) denotes the expected value.
The minimum number of calibrators for this fit type is two.
Extrapolation is only available for the linear regression fit type.

Four parameter logistic
The four-parameter logistic method uses the fit model below:
\[
y = b + \frac{a - b}{1 + (xc)^d}
\]
In the equation above, \(y \) is the signal, \(x \) the concentration, \(a \) the response at high asymptote, \(b \) the response at low asymptote, \(c \) the 1/concentration corresponding to 50% specific binding, and \(d \) the slope factor.
The minimum number of calibrators for this fit type is five.
The Concentration logarithmic transformation is not available for this fit type.
Extrapolation is not available for the four-parameter logistic fit type.

Cubic spline
This method is a smoothed point-to-point method where the adjacent calibration points are connected together using cubic polynomials (see the equation below) and optimizing the connecting points as smoothly as possible to avoid sharp angles. The results are calculated by first searching for the correct interval and then using a bisecting method to find the answer from the corresponding equation. The minimum number of calibrators for this fit type is five.
\[
y_i = a_i + b_i x_i + c_i x_i^2 + d_i x_i^3
\]
Extrapolation is not available for the cubic spline fit type. Only the means of the measured calibrator replicates can be used, not the individual replicate values.
Point to point

The point-to-point method connects the adjacent response-concentrations coordinates, that is, the calibration points, together using a straight line (see the equation below), which is different for each of the intervals. The results are calculated by first searching for the correct interval and then using the corresponding equation. The minimum number of calibrators for this fit type is two.

\[y_i = a_i + b_i x_i \]

Extrapolation is not available for the point-to-point fit type. Only the means of the measured calibrator replicates are used in the calculations. The replicates are visible in the graph but they are not used in calculations.

Factor

Measured absorbances are multiplied with a factor given by the user to obtain the concentrations. The concentration is calculated according to the following equation:

Concentration = Factor x absorbance

Stored curve

You can use a stored curve for an assay (a run). You can only use a stored curve with the protocol it was created with. After the curve has been stored, the plate layout may be modified to contain, for example, only unknowns. You can save the curve from the curve window using **FILE/Save calibrators** and load it using **FILE/Load curve**.

Note

The stored curve must be older than the measured run data. This means that if a new curve is stored, the earlier saved assay run data cannot be recalculated against the new curve. ▲

Interpretation parameters

You can define the qualitative calculation (classification) in the **Interpretation** window.
Table 5-10. Processing parameters / Interpretation

Processing / Interpretation

<table>
<thead>
<tr>
<th>Interpretation</th>
<th>Source data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interpretation 1</td>
<td>Limit 1</td>
</tr>
<tr>
<td>Sample</td>
<td>BLA</td>
</tr>
<tr>
<td>Raw</td>
<td>Blanked</td>
</tr>
<tr>
<td>CAL1-CAL12</td>
<td>Raw</td>
</tr>
<tr>
<td>CTRL1-CTRL5</td>
<td>Raw</td>
</tr>
<tr>
<td>Operator</td>
<td>+</td>
</tr>
<tr>
<td>Constant</td>
<td>1.00</td>
</tr>
<tr>
<td>Function</td>
<td>SD</td>
</tr>
<tr>
<td>Delete</td>
<td></td>
</tr>
<tr>
<td>Interpretation 2</td>
<td></td>
</tr>
<tr>
<td>Limit 2</td>
<td></td>
</tr>
<tr>
<td>Sample</td>
<td></td>
</tr>
<tr>
<td>BLA</td>
<td></td>
</tr>
<tr>
<td>Raw</td>
<td>Blanked</td>
</tr>
<tr>
<td>CAL1-CAL12</td>
<td>Raw</td>
</tr>
<tr>
<td>CTRL1-CTRL5</td>
<td>Raw</td>
</tr>
<tr>
<td>Operator</td>
<td>+</td>
</tr>
<tr>
<td>Constant</td>
<td>1.00</td>
</tr>
<tr>
<td>Function</td>
<td>SD</td>
</tr>
<tr>
<td>Delete</td>
<td></td>
</tr>
<tr>
<td>Interpretation 3</td>
<td></td>
</tr>
</tbody>
</table>

* The pop-up menu appears when you double-click Sample.

Depending on the level of the internal software, the `FILE` key opens a list of actions possible for the current protocol.

Interpretation (classification) can be used in a qualitative assay (a run), where no absolute concentration is calculated, and it can also be used for a quantitative assay (a run) when the interpretation is made based on the calculated concentration.

In a qualitative classification analysis (interpretation), the results are divided into separate categories. The data is categorized using cutoff values (Limit 1 and Limit 2) for up to three different categories.
The limits (cutoff values) can be set as a number, a formula, a specified sample, or a formula containing both samples and numbers.

The absorbances or concentrations of the samples are compared to the limits and defined, for example, as negative or positive.

Source data

You must define the **Source data** for the interpretation calculation. The source data used for interpretation can include the following data types:

- Raw absorbances (Raw)
- Blank subtracted absorbances (Blank)
- Precalculated absorbances (Dual)
- Preprocessed kinetic values (Kinetic)
- Calculated concentrations

For further information, refer to “Preprocessing parameters” on page 37.

Interpretation and limits

An **interpretation** calculation always contains at least one limit and two categories. Refer to Figure 5–17 on page 53.

Interpretation 1 is a typed name for the sample result in the category less than Limit 1, for example, *Neg*.

Interpretation 2 is a typed name for the sample result in the category of higher than Limit 1 but less than Limit 2, for example, *Pos*.

Interpretation 3 is a typed name for the sample result in the category of higher than Limit 2, for example *High pos*.

The interpretation limits can be entered with an editor. The editor contains the following items:

- **Sample** – You can select a sample to be used for a limit calculation. The **Sample types** can be blank (BLA), Calibrator (CAL1-CAL2) or Control (CTRL1-CTRL5). If the sample has replicates, the average value of these is automatically selected. Both raw and calculated data of a sample can be used as a criteria.

- **Operator** – One of the following can be chosen to be used in the formula: +, -, *, / or ().
- **Constant** is the numeric value used for the calculation. A constant can be entered with the number keys on the keypad.

- **Function** can be a standard deviation (SD) or a coefficient variance percentage (CV%). SD calculates the standard deviation of the sample. CV calculates the coefficient of variation for the sample.

- **Delete** deletes the created formula digit by digit.

Figure 5–17. Interpretation and limits

For instructions on how to program an interpretation to the protocol, see “Programming an interpretation” on page 73.

Quality control parameters

Quality control (QC) is used to program rules for quality control and thereby ensure that the assay works as expected. You can set a maximum of four QC rules per protocol.
Menus and Parameters

Results menu

Table 5–11. Processing parameters / Quality control

<table>
<thead>
<tr>
<th>Processing / Quality control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable quality control</td>
</tr>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>Rule 1</td>
</tr>
<tr>
<td>Rule 2</td>
</tr>
<tr>
<td>Rule 3</td>
</tr>
<tr>
<td>Rule 4</td>
</tr>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

Depending on the level of the internal software, the FILE key opens a list of actions possible for the current protocol.

The rules (formulas) can be entered with a QC rule editor. The editor contains the following items:

- **Sample** – Select the sample to be checked. It can be any of the calibrators or controls present in the layout or the blank. If the sample has replicates, the average value of these is automatically selected for the QC check. Both raw and calculated data of a sample can be used as a criteria.

- **Operator** – One of the following can be chosen to be used in the formula: +, -, *, /, (,), > or <.

- **Constant** – A constant can be entered with the number keys on the keypad.

- **Function** – SD or CV% of a sample can be added. SD calculates the standard deviation of the sample. CV calculates the coefficient of variation of the sample.

- **Delete** deletes the created formula digit by digit.

For instructions on how to add a QC rule to a protocol, refer to “Adding a QC rule to the protocol” on page 75.

Results menu

You can view the results of a measured run (assay) in several formats in the Results menu, depending on the protocol settings in the Processing menu: raw data in list and table format, calculated results in list and table format, and graphs (calibration and kinetic curves).
The assay data that is linked to the protocol consists of raw data and all the information needed for calculations programmed in the **Main** and **Processing** menus.

The result of the previously run assay protocol (measured protocol) is shown as default (if exists). When another protocol is selected from the **Main** menu, the result view is cleared to avoid any conflicts.

Note The instrument measures the absorbance with four decimals. Absorbance data is presented with three decimals. However, all measured decimals are used in further calculations. ▲

Note Results over 4 Abs are calculated but they are struckthrough, and interpretations for these results are not given. ▲

Raw data You can see the unprocessed data (raw absorbances) of the assay in the **Raw data** window.

You can disable/enable samples and sample replicates from the raw data by pressing the **OK** button. Select ***Disable*** and press the **OK** button.

You can print or export the selected data. For further information, refer to Chapter 8: “**Viewing Results**”.
Menus and Parameters

Results menu

Calculated results

The calculated results are shown in the Calculated window.

Note Blank subtraction is made automatically if the plate layout includes blanks. The blank used in the calculations is always an average of the blanks included in the layout.

Note The results of precalculations are not available in the data view. They are only available in exported or printed reports.

The kinetic timing is relative. This means that each time point is calculated from the first measurement point with the filter.

You can print or export the selected data. For further information, refer to Chapter 8: “Viewing Results”.

Calibration curve

The calibration curve is shown in the Calibration curve window.

The report also includes the calculated fit parameters of the curve.

You can use both the curve on the plate and a previously created calibration curve of the same assay protocol. You can store a curve for future use with the FILE function. You can load a saved curve for the active protocol with the FILE function.

If a stored curve is in use for calculation, the calibrators measured with the current plate can be taken into use with the Menu function.
Note The plate layout must include calibrators to enable them for further calculations, for example, curve fits. Refer to “Curve fits” on page 48.

Note Verify the correctness of the calibration curve.

You can disable and enable calibrator replicates from the curve by pressing the OK button in the Calibration curve window.

You can print or export the selected data. For further information, refer to Chapter 8: “Viewing Results”.

Quality control (QC)

You can view the quality control data in the Quality control window.

If the QC rules are not fulfilled and the assay is therefore not valid, the QC view is not opened until after the measurement.

You can print or export the selected data. For further information, refer to Chapter 8: “Viewing Results”.

Results in list format

The assay results can be viewed in list format in the Results in list format window.

You can print or export the selected data. For further information, refer to Chapter 8: “Viewing Results”.

<table>
<thead>
<tr>
<th>Rule</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw(CAL) < 0.08</td>
<td>0.0040 < 0.08 PASS</td>
</tr>
<tr>
<td>Cons(CONTROL) < 20</td>
<td>11.2 FAIL</td>
</tr>
<tr>
<td></td>
<td>4.</td>
</tr>
</tbody>
</table>
Settings menu

You can set the instrument parameters in the **Settings** menu.

The values shown in the **Settings** menu remain in the instrument memory and are instrument-specific, not protocol-specific.

You can define **System**, **Filters**, **Printer** and **Startup** settings.

For instructions on how to modify different settings, refer to Chapter 11: “Modifying Settings”.
Table 5–12. Settings parameters

<table>
<thead>
<tr>
<th>Settings</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>22.09.2008 14:19:01</td>
</tr>
<tr>
<td>Date format</td>
<td></td>
</tr>
<tr>
<td>Date format</td>
<td>dd-mm-yyyy</td>
</tr>
<tr>
<td>Date format</td>
<td>dd/mm/yyyy</td>
</tr>
<tr>
<td>Date format</td>
<td>dd.mm.yyyy</td>
</tr>
<tr>
<td>Date format</td>
<td>yyyy-mm-dd</td>
</tr>
<tr>
<td>Date format</td>
<td>mm/dd/yyyy</td>
</tr>
<tr>
<td>Time format</td>
<td>12 hour</td>
</tr>
<tr>
<td>Time format</td>
<td>24 hour</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Language</td>
<td>Russian</td>
</tr>
<tr>
<td>Language</td>
<td>French</td>
</tr>
<tr>
<td>Language</td>
<td>Spanish</td>
</tr>
<tr>
<td>Language</td>
<td>Chinese</td>
</tr>
<tr>
<td>Language</td>
<td>Japanese</td>
</tr>
<tr>
<td>Language</td>
<td>Portuguese</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Filters</td>
<td></td>
</tr>
<tr>
<td>Wavelength</td>
<td>405 (1)</td>
</tr>
<tr>
<td>Wavelength</td>
<td>450 (2)</td>
</tr>
<tr>
<td>Wavelength</td>
<td>620 (3)</td>
</tr>
<tr>
<td>Printer</td>
<td></td>
</tr>
<tr>
<td>Printer parameters</td>
<td></td>
</tr>
<tr>
<td>Enable header</td>
<td>Yes</td>
</tr>
<tr>
<td>Enable header</td>
<td>No</td>
</tr>
<tr>
<td>Header text</td>
<td>For example, Laboratory 123</td>
</tr>
<tr>
<td>Startup</td>
<td></td>
</tr>
<tr>
<td>Plate position</td>
<td>In</td>
</tr>
<tr>
<td>Plate position</td>
<td>Out</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>No</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>25-50</td>
</tr>
</tbody>
</table>
Menus and Parameters

Settings menu
Chapter 6
Starting Ready-made Protocols

Starting a ready-made protocol with the quick keys (F1-F3)

Use the F1-F3 function keys reserved for ready-made, demo or favorite protocols to measure routine assays quickly. Three default protocols can be connected to the F1-F3 keys. You can change these protocols from Protocol > OK > FILE > Quick Key > Set/Clear F1-F3.

Caution 1) Do not switch the power off during “Performing self diagnostics”. 2) Do not plug/unplug the printer cable during Importing/Exporting data from/to the USB memory stick. 3) Do not plug/unplug the USB memory stick during “Printing” or “Performing self diagnostics”. ▲

To start a ready-made protocol shown on the info text bar with the quick keys (F1-F3), follow these steps:

1. Press, for example, the F1 key (Demo1) in the Main menu.

2. If the plate carrier is inside the instrument, press the PLATE in/out button. Insert the assay microplate so that the A1 corner is positioned in the top left corner of the plate carrier (Figure 6–18).

Figure 6–18. Multiskan FC plate carrier
Starting Ready-made Protocols
Starting a ready-made protocol from the list

3. Press the **START** button.

4. Enter the unknown count with the number keys.

5. Press the **START** or **OK** button to accept the selection and to start the measurement.

Note If you want to cancel the run, press the **F2** key.

6. The microplate is measured and the results are automatically calculated according to the predefined protocol.

Note During the run you can press the **STOP** button to abort the run.

7. Press the **F2** key to close the result table, and then press the **Left** arrow key twice to return to the **Main** menu.

Note The main parameters are locked when a run (measured data) for this protocol exists.

Refer to Chapter 13: “Maintenance”.

Starting a ready-made protocol from the list

To start a ready-made protocol from the protocol list, follow these steps:

Caution 1) Do not switch the power off during “Performing self diagnostics”. 2) Do not plug/unplug the printer cable during Importing/Exporting data from/to the USB memory stick. 3) Do not plug/unplug the USB memory stick during “Printing” or “Performing self diagnostics”.

1. Press the **OK** button on the **Protocol** row in the **Main** menu
 OR
 Press the **FILE** key in the **Main** menu and select **Open** using the **Down** arrow key, and then press the **OK** button.
2. Select the ready-made assay protocol you want to run from the protocol list using the Down arrow key, and then press the OK button.

Note The protocol name selected is shown on the Protocol row in the Main menu. ▲

3. If the plate carrier is inside the instrument, press the PLATE in/out button. Insert the assay microplate so that the A1 corner is positioned in the top left corner of the plate carrier.

4. Press the START button.

5. Enter the unknown count with the number keys.

6. Press the START or OK button to accept the selection and to start the measurement.

Note If you want to cancel the run, press the F2 key. ▲

7. The microplate is measured and the results are automatically calculated according to the predefined protocol.

Note During the run, you can press the STOP button to abort the run. ▲
8. Press the F2 key to close the result table, and then press the Left arrow key twice to return to the Main menu.

Note The main parameters are locked when a run (measured data) for this protocol exists. ▲

Refer to Chapter 13: “Maintenance”.
Chapter 7
Protocol Creation Examples

This section provides examples on how to open a new protocol, how to program main parameters (wavelength, shaking, incubation), the plate layout and precalculation, calculation and interpretation parameters, and how to save the protocol.

Note Ensure that you save the changes you make in each step. Refer to “Saving a new (active) protocol” on page 76.

Opening a new protocol

To open a new protocol, follow these steps:

1. Press the FILE key in the Main menu.
2. Select New and press the OK button.

Programming a wavelength

To program a wavelength, follow these steps:

1. Select the Measurement row in the Main menu using the Down arrow key and press the OK button.
2. Press the OK button at the Filter 1 (nm) item and select, for example, 450 as the filter 1 value using the Down arrow key, and then press the OK button.
3. Press the F1 key to accept the selection and return to the Main menu.

Programming shaking

To program the shaking parameters, follow these steps:

1. Select the **Shaking** row in the Main menu using the Down arrow key and press the OK button.

2. Press the OK button at the **Mode** item and select, for example, *Before measurement* as the shaking mode using the Down arrow key, and then press the OK button.

3. Select the **Speed** item using the Down arrow key and press the OK button.

4. Select, for example, *Fast* as the shaking speed using the Down arrow key, and then press the OK button.

5. Select the **Time (hh:mm:ss)** item using the Down arrow key and press the OK button.

6. Select, for example, 20 seconds (= 00:00:20) as the shaking time by using the number keys, and then press the OK button.

7. Press the F1 key to accept the selection and return to the Main menu.

Programming incubation

You can set the incubation time and temperature in the Incubation window.

Note The Incubation row is only active with the Multiskan FC with incubator model. ▲
1. Select the **Incubation** row in the **Main** menu using the **Down** arrow key and press the **OK** button.

2. Press the **OK** button on the **Temperature** row and use the **Down** arrow key to select the preferred temperature from the list. The temperature range is from 25 to 50°C. Then press the **OK** button.

3. If **Wait for warm up** is set to **Yes**, the assay will not start until the temperature is reached. If **Wait for warm up** is set to **No**, the assay will start.

4. Select the **Time (hh:mm:ss)** item using the **Down** arrow key and press the **OK** button.

5. Select, for example, **5 min** (00:05:00) as the incubation time by using the number keys, and then press the **OK** button.

6. Press the **F1** key to accept the incubation parameters.
Programming a plate layout

You can start filling the plate layout on any of the wells of the plate. You start the fill procedure from the well marked with a blue square. You can start filling a series of samples by pressing the OK button in the highlighted well. You can edit and delete a single well with the Edit function.

In this example

- a blank sample
- Calibrator 1 (Conc. 1)
- Calibrator 2 (Conc. 2)
- Calibrator 3 (Conc. 3)
- a control sample, and
- 91 unknown samples

are programmed.

To create the plate layout of this example protocol, follow these steps:

1. Select the Plate layout row in the Processing menu using the Right arrow key. Then press the OK button to open the Layout window.

2. Press the OK button to start filling the plate from well A1.

3. Select the Well type item in the Add series starting from well: A1 window and press the OK button.

4. Select, for example, a Blank sample using the Up arrow key, and then press the OK button.
5. Press the F1 key to accept the selection and return to the Layout window (well A2).

6. Select well B1 using the Down and Left arrow keys and press the OK button to start filling the plate from well B1.

7. Select the Well type item in the Add series starting from well: B1 window and press the OK button.

8. Select, for example, a Calibrator sample using the Up arrow key, and then press the OK button.

9. Select the Number of item using the Down arrow key and press the OK button.

10. Select, for example, 3 by using the number keys, and then press the OK button.

11. Press the F3 (Conc.) key to program the concentrations for the calibrators.

12. Select the Cal 1 item using the Down arrow key and press the OK button.
13. Enter, for example, 1 (1.00) as the Cal 1 concentration using the number keys, and then press the OK button.

14. Select the Cal 2 item using the Down arrow key and press the OK button.

15. Enter, for example, 2 (2.00) as the Cal 2 concentration using the number keys, and then press the OK button.

16. Select the Cal 3 item using the Down arrow key and press the OK button.

17. Enter, for example, 3 (3.00) as the Cal 3 concentration using the number keys, and then press the OK button.

<table>
<thead>
<tr>
<th>Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cal 1 1.00</td>
</tr>
<tr>
<td>Cal 2 2.00</td>
</tr>
<tr>
<td>Cal 3 3.00</td>
</tr>
</tbody>
</table>

18. Press the F1 key to accept the concentrations and return to the previous view, i.e., the Add series starting from well: B1 window.

19. Press the F1 key to accept the concentrations and to return to the Layout window.

20. Press the OK button to start filling the plate from well E1.

21. Select the Well type item in the Add series starting from well: E1 window and press the OK button.

22. Select, for example, a Control sample using the Up arrow key, and then press the OK button.

23. Press the F1 key to accept the selection and return to the Layout window.
24. Press the OK button to start filling the plate from well F1.

25. Select the Well type item in the Add series starting from well: F1 window and press the OK button.

26. Select, for example, an Unknown sample using the Up arrow key, and then press the OK button.

27. Select the Number of item using the Down arrow key and press the OK button.

28. Select, for example, 9I using the number keys, and then press the OK button.

29. Press the F1 key to accept the selection and return to the Layout window. The filled wells will show the following colors: white for blank wells, green for calibrators, bright green for controls, and blue for unknowns.

30. Press the F1 key again to accept the plate layout and to return to the Processing menu.

In this section examples of programming calculations or interpretations are described.

Preprocessing carries out calculations that are normally made as a first step in result handling, that is, preprocessing and kinetic calculations.

Precalculation is used with dual (two wavelength) measurements, for example, subtracting the reference wavelength from the assay measurement wavelength.
Protocol Creation Examples
Programming calculations and interpretations

To program calculations, follow these steps:

1. Select the Calculation row in the Processing menu using the Down arrow key and press the OK button.

2. Select Type and press the OK button.

3. Select, for example, *Linear regression* as the calculation type (calibrator curve fit) using the Down arrow key, and then press the OK button.
4. Press the F1 key to accept the selection.

5. Press the Left arrow key to return to the Main menu.

Programming an interpretation

The following example shows how to add an interpretation to a protocol.

The interpretation limit in this example is the absorbance of the negative control + 0.05 Abs. The samples below the limit are categorized as negative (Neg) and the samples above it as positive (Pos).

1. Select the Interpretation row in the Processing menu using the Down arrow key and press the OK button.

2. Select Source data and press the OK button.

3. Select, for example, Blanked using the Down arrow key, and then press the OK button.

4. Select Interpretation 1 using the Up arrow key and press the OK button.
5. Enter the category name, for example, Neg, by using the letter keys and press the OK button.

6. Select Limit (negative) using the Up arrow key and press the OK button.

 The limit editor is opened.

 - Limit 1:

 - Sample Operator Constant Function Delete

 Move OK:Edit Accept Cancel

7. Select Sample and press the OK button.

8. Select CTRL 1 by using the Down arrow key and press the OK button.

9. Select Raw and press the OK button.

10. Select Operator using the Right arrow key and press the OK button.

11. Select + and press the OK button.

12. Select Constant using the Right arrow key and press the OK button.

13. Enter the constant, for example, 0.050, using the number keys and press the OK button.

14. Press the F1 key to accept the formula.

15. Select Interpretation 2 using the Up arrow key and press the OK button.
Adding a QC rule to the protocol

The rules are normally given in the kit insert and can read, for example, *the absorbance of Blank has to be smaller than 0.100 Abs.* In this case the rules to be entered would be: *Sample: Raw(BLA), Operator: <, Constant: 0.100.*

The following example shows how to add a Quality Control (QC) rule to a protocol.

1. Select the **Quality Control** row in the **Processing** menu using the **Down** arrow key and press the **OK** button.

2. Press the **OK** button on the **Enable quality control** and select **Yes** using the **Up** arrow key, and then press the **OK** button.

3. Select the **Rule 1** row using the **Down** arrow key and press the **OK** button.

4. Select **Sample** and press the **OK** button.

16. Enter the category name, for example, *Pos (positive),* using the letter keys, and then press the **OK** button.

17. Press the **F1** key to accept the interpretation.
Protocol Creation Examples
Saving a new (active) protocol

5. Select BLA (blank) and press the OK button.

6. Select Raw and press the OK button.

7. Select Operator using the Right arrow key and press the OK button.

8. Select < using the Down arrow key and press the OK button.

9. Select Constant using the Right arrow key and press the OK button.

10. Enter the constant, for example, 0.100 using the number keys and press the OK button.

11. Press the F1 key to accept the Rule 1 formula.

12. Press the F1 key to accept the Quality control parameters and to return to the Processing menu.

Saving a new (active) protocol
To save a new (active) protocol that is open in the menu, follow these steps:

1. Press the FILE key in the Main menu.

2. Select Save As using the Down arrow key and press the OK button. The Save Protocol As dialog opens.

3. Enter the protocol name, for example, Test1, by using the number and letter keys, and then press the OK button.
Note You cannot use the protocol name “Undefined”. ▲

Note The results of an “Undefined” protocol are not saved unless you save the active protocol, including the measured run data with a new name. ▲
Protocol Creation Examples

Saving a new (active) protocol
Chapter 8
Viewing Results

Viewing results

The results can be viewed in several formats (depending on the protocol settings): raw data in list and table format, calculated results in list and table format and graphs (calibration or kinetic curves).

You can disable/enable samples and sample replicates from the raw data in table format.

After the run has finished, the data view of a run is automatically shown.

The order of the data views (results) to be shown is according to the following list, depending on which calculations were used in the protocol:

- Assay quality control (if failed). The results of a failed run are flagged.
- Interpretation
- Quantitative results
- Precalculated results
- Raw data

1. Press the F3 (Menu) key to enable menus of different data views in order to view them.
2. Select another data view using the **Up** and **Down** arrow keys and press the **OK** button.

3. Press the **FILE** key in the data view to print or export a data view. Select **Export As Text** or **Print** using the **Down** arrow key if necessary, and then press the **OK** button.

4. Press the **F2** key to close the data view.

5. Select another row from the **Results** menu using the **Up** and **Down** arrow keys and press the **OK** button. To view different data views or to print, refer to Steps 2-4.

6. Press the **F2** key to close the data view.

7. Press the **Left** arrow key to return to the **Main** menu.
Chapter 9
Printing, Exporting and Importing

The calculated results or stored protocols can be printed after the measurement using the FILE key. The printout is sent to the external printer according to the general settings of the instrument. The printed data can be selected.

The report to be printed can be defined by FILE/Print/Define Report in the main level of Results.

Each active data table can also be defined by using FILE/Print.

Note: It is recommended to format the USB memory stick if export or import fails.

Printing or exporting data

This section provides information on how the active run data (measured results) can be printed or exported to the USB memory stick. Follow these steps:

1. If you are exporting data, insert the USB memory stick into the USB memory stick port of the instrument
 OR
 If you are printing data, ensure that the printer is connected and switched on.

2. In the Main menu, press the Right arrow key continuously till you get to the Results menu.

3. Press the FILE key.
4. Select *Export Results As Text* or *Print Results* and press the OK button.

5. The *Define export/Print* box is opened. Select the information you want using the Down arrow key and tick the check box with the OK button.

6. Press the F1 key to accept the desired data.

 Data is exported to the USB memory stick or printed to the external printer depending on the selection.

 Run information includes all protocol and processing parameters.

 The naming of an export file is automatic with a running number, that is, the instrument searches for the first number available.

 Note The data format should be UTF 8 when the *.*txt file is opened in, for example, Microsoft Excel.

 Note The internal software uses 32-bit floating point numbers in processing.

Exporting a protocol

The calculated results or stored protocols can be exported to the USB memory stick via the USB port (Figure 2–8 on page 18) by using the FILE key. Runs, including protocol information and data, can be exported. Protocols can be exported and imported to another Multiskan FC instrument with the same configuration. Import of runs is only possible to the same instrument as backup.

In the main level of Results, the results or protocols to be exported can be defined by FILE/Export.

A protocol can be transferred from an instrument and imported to another instrument. To export a protocol, follow these steps:
1. Insert the USB memory stick into the USB memory stick port of the instrument.

2. Press the **OK** button on the **Protocol** row in the **Main** menu
OR
Press the **FILE** key and select *Open* using the **Down** arrow key and press the **OK** button.

3. Select the protocol you want to export from the protocol list using the **Up** or **Down** arrow key.

4. Press the **FILE** key and select *Export* using the **Down** arrow key. Then press the **OK** button.

5. If you also want to export the runs that are created (measured) with the protocol, press the **OK** button. If not, press the **Right** arrow key, and then the **OK** button.

 Protocol information will be exported.

6. Press the **F2** key to close the protocol list and return to the **Main** menu.

Importing a protocol

To import a protocol, follow these steps:

1. Insert the USB memory stick into the USB memory stick port of the instrument.
Printing, Exporting and Importing

Printing or exporting data

2. Press the **OK** button on the **Protocol** row in the **Main** menu
 OR
 Press the **FILE** key in the **Main** menu and select **Open** using the **Down** arrow key. Then press the **OK** button.

3. Press the **FILE** key and select **Import** using the **Down** arrow key, and then press the **OK** button.

4. Select the protocol you want to import from the USB protocol list using the **Up** or **Down** arrow key and press the **OK** button.

Note You can only import the runs to the same instrument they were created with. You can also import the protocol to an instrument with the same configuration.

▲

5. Press the **F2** key to close the protocol list and return to the **Main** menu.
Chapter 10
Shutdown

Shutting down

To shut down the Multiskan FC, follow these steps:

1. Remove any plates still in the instrument.

2. Press the **PLATE in/out** button. Make sure the plate carriage goes inside the instrument and check that the measurement chamber door closes properly.

3. Switch OFF the instrument.

4. If you have spilt infectious agents on the instrument, disinfect with 70% ethanol or some other disinfectant (see “Decontamination procedure” on page 96).
Shutdown
Shutting down
Chapter 11
Modifying Settings

You can modify settings related to the system, filters, printer or startup in the Settings menu.

![Settings Menu]

System settings

The Multiskan FC instrument’s internal software version, serial number and model are shown in the System settings window. Model 1 refers to Multiskan FC and Model 2 to Multiskan FC with incubator.

You can set the date, date and time format, and language in the System settings parameter window.

Select the item to be changed with the Up and Down arrow keys and press the OK button.

Setting the date

You can change the date in the System settings.

The Left and Right arrow keys are used to move from one position to another in the Date setting. Enter the values with the number keys.

Changing the language

You can set the internal software language by moving to Language and selecting the preferred language from the drop-down list.

To change the internal software language, follow these steps:
1. In the Main menu, select the Settings menu using the Left arrow key.

2. Select the System row and press the OK button.

3. Select the Language item using the Down arrow key and press the OK button.

4. Select the internal software language, for example, Français, using the Down arrow key, and then press the OK button to accept the selection.

5. Press the F2 key to confirm the selection and to close the system parameters.

6. Return to the Main menu using the Right arrow key.

Filters

Multiskan FC comes with installed filters of 405 mm, 450 mm and 620 mm.

You can introduce a filter to the internal software by moving to the Filters settings. The filter wavelength must be between 340 and 850 nm.

The Filters settings window shows the current filters of the filter wheel.
Introducing a filter to the internal software

This section provides an example on how to enter the information of an additional filter, which has been added to the filter wheel. To introduce a filter to the internal software, follow the given steps.

Note Before introducing the additional filter to the internal software, make sure the filter is physically inserted into the next free filter position in the filter wheel and the filter wheel is placed into the filter wheel slot.

1. In the **Main** menu, select the **Settings** menu using the **Left** arrow key.

2. Select the **Filters** row using the **Down** arrow key and press the **OK** button.

3. Select the empty filter position by pressing the **Right** arrow key until the filter wheel on the display rotates to the empty position and the text “*Empty*” is shown.

4. Press the **OK** button. Enter the wavelength of the filter, for example, *492*, with the number keys, and then press the **OK** button.

5. Press the **F1** key to accept the filter settings.

Note The instrument starts the filter initialization.

6. Press the **Right** arrow key to return to the **Main** menu.
Removing a filter

You can remove a filter from the instrument settings by selecting the position and pressing the F3 (Remove) key.

Note The filter must physically be removed from the filter wheel.

Printer

You can add a header in the Printer parameter window, for example, the laboratory information, to all of the reports to be printed. You can do this by selecting Yes for the Enable header.

The maximum length of the header is about 50 characters.

Startup

In the Startup parameters, the Plate position setting defines the plate carrier position after the instrument is switched on.

You can set the startup temperature. The instrument starts to warm up to the set temperature immediately after it has been switched on.

Note The set startup temperature is only activated when the instrument is powered (switched on). The temperature set in the protocol overrides the startup temperature. If the protocol does not include incubation, the startup temperature remains.
Chapter 12
Emergency Situations

In case there is any abnormal situation during the operation, such as fluids spilling inside the instrument, follow these steps:

1. Switch OFF the instrument (Figure 3–10 on page 21).

2. Unplug the instrument immediately from the power supply (Figure 2–8 on page 18).

3. Carry out appropriate corrective measures. However, do not disassemble the instrument.

4. If the corrective measures taken do not help, contact authorized technical service or your local Thermo Fisher Scientific representative.
Emergency Situations
Handling emergency situations
Chapter 13
Maintenance

Regular and preventative maintenance

Contact local authorized technical service or your local Thermo Fisher Scientific representative for assistance, if necessary.

This chapter contains an outline of the points mentioned in the checklist below (Table 13–13).

Table 13–13. Maintenance checklist

<table>
<thead>
<tr>
<th>Item</th>
<th>Daily</th>
<th>Weekly</th>
<th>Monthly</th>
<th>Yearly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep the instrument free of dust. See “General” on page 94.</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avoid disturbing any of the optical system components, including optical covers. See “General” on page 94.</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean and check the condition of the filters and the filter wheel position slot.</td>
<td></td>
<td>2 x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wipe away spilled saline solutions, solvents, acids or alkaline solutions from outer surfaces immediately to prevent damage, and wipe with deionized distilled water. See "Immediate" on page 94.</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If any surfaces have been contaminated with biohazardous material, disinfect with a mild sterilizing solution. See “General” on page 94.</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean the case of the instrument periodically. See “Cleaning of the instrument” on page 95.</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean the plate carrier when necessary. See “Cleaning of the instrument” on page 95.</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change the lamp when blown. See “Changing the lamp” on page 101.</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ensure proper shutdown. See Chapter 10: “Shutdown”.</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decontaminate the instrument when relocating the instrument or sending it for service. See “Decontamination procedure” on page 96.</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perform verification with the Multiskan Verification Plate, Cat. no. 24072800.</td>
<td></td>
<td>2 x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service the instrument regularly. See “Cleaning of the instrument” on page 95 and “Maintaining a system log” on page 105.</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

✔ = depending on the laboratory conditions and the use and configuration of the instrument
General

Routine and service procedures must be performed by the user to prevent unnecessary wear or hazards and are described below at the frequency with which they should be applied.

Always ensure that the electrical supply in the laboratory conforms to that specified on the type label of the instrument.

To guarantee the continuous reliability and accuracy of the Multiskan FC, avoid disturbing any of the optical system components. A misalignment of the light path affects measurements.

- Keep the filters clean to ensure proper function and accurate results.
- Prevent any liquid from entering the instrument.
- Keep the instrument free of dust and other foreign matter.
- Avoid touching the lens surfaces, filters or detectors with your bare hands.
- Perform the operational check regularly (see “Performing the operational check” on page 18).

In the event of any damage, contact your local Thermo Fisher Scientific representative for service.

Abrasive cleaning agents are not recommended, because they are likely to damage the paint finish.

It is recommended that you clean the case of the instrument periodically to maintain its good appearance (see “Cleaning of the instrument” on page 95).

Clean the keypad surface with a mild laboratory detergent.

Plastic covers and surfaces can be cleaned with a mild laboratory detergent or alcohol.

Warning If any surfaces have been contaminated with biohazardous material, a mild sterilizing solution should be used. ▲

Caution Do not autoclave any part of this instrument. ▲

Immediate

Although the Multiskan FC is constructed from high-quality materials, you must immediately wipe away spilled saline solutions, solvents, acids or alkaline solutions from outer surfaces to prevent damage and wipe with deionized distilled water.
Cleaning a filter

To clean filters, follow these steps:

1. Remove particles, for example, dust, with clean pressurized air.

2. If necessary, clean the filters with a lintfree tissue soaked in 70% ethanol.

Caution Do not use any other liquids to clean the optics. Avoid any harsh treatment.

3. Wipe over the filter in a straight movement from inside to out. Do not use any circular movements when cleaning the filter.

4. Repeat the procedure if the filter is not clean.

Cleaning of the instrument

Clean the instrument regularly as stated below.

Caution Painted surfaces can be cleaned with most laboratory detergents. Dilute the cleaning agent as recommended by the manufacturer. Do not expose painted surfaces to concentrated acids or alcohols for prolonged periods of time as damage may occur.

1. Turn the power OFF and unplug the instrument.

2. Use disposable gloves.

3. Clean the instrument outside and the plate carrier with a soft cloth dampened with water or mild detergent.

4. If you have spilt infectious agents on the instrument, decontaminate the instrument. Refer to “Decontamination procedure” on page 96.

Caution Do not use any solutions containing hypochlorite, such as bleach, on any of the stainless steel surfaces, as this may cause permanent damage to the finish.
Disposal of materials

Follow laboratory and country-specific procedures for biohazardous or radioactive waste disposal. Refer to local regulations for the disposal of infectious material.

Warning The samples can be potentially infectious. Dispose of all used plates, disposable gloves, syringes, disposable tips, and so on as biohazardous waste. Be cautious and always use gloves.

Decontamination procedure

If you have spilt infectious agents, carry out the decontamination procedure.

Warning The decontamination procedure should be performed by authorized trained personnel in a well-ventilated room wearing disposable gloves, protective glasses and clothing.

Decontamination should be performed in accordance with normal laboratory procedures. Any decontamination instructions provided with the reagents used should be followed.

It is strongly recommended to perform the complete decontamination procedure before relocating the instrument from one laboratory to another.

Example of decontaminants:

- Ethanol 70%
- Virkon solution 1 – 3%
- Glutaraldehyde solution 4%
- Chloramine T
- Microcide SQ 1:64

Caution If local or laboratory regulations prescribe regular decontamination, it is not advisable to use formaldehyde, since even small traces of formaldehyde negatively affect the enzyme being used in EIA tests resulting in bad test results.

To decontaminate the instrument, follow these steps:

1. Prepare the decontaminant.
2. Empty the plate carrier. Ensure that you are wearing disposable gloves.
3. Switch OFF the power and disconnect the power supply cable.
4. Disinfect the outside of the instrument or to remove stains using a cloth dampened with 70% ethanol.

5. Place the instrument in a large plastic bag. Ensure that the lamp and filter wheel chamber cover and measurement chamber door are open and the plate carrier is out.

6. Place a cloth soaked in the prepared decontaminant solution into the bag. Ensure that the cloth does not come into contact with the instrument.

7. Close the bag firmly and leave the instrument in the bag for at least 24 hours.

8. Remove the instrument from the bag.

9. After decontamination clean the instrument using a mild detergent.

10. After performing this decontamination procedure, enclose a signed and dated Certificate of Decontamination both inside the transport package and attached to the outside of the package.

Adding individual filters to the filter wheel

This section explains how to replace a filter in the filter wheel or add an additional filter to the filter wheel.

Caution Only use filters approved by the instrument manufacturer. ▲

Note The filter is a consumable and should be changed regularly. ▲

1. Switch the power OFF.

2. Open the lamp and filter wheel chamber cover.

Caution When handling the filter wheel, do not touch any other mechanical or electronic part. ▲

3. Lift the filter wheel from the filter wheel slot (Figure 2–7 on page 17 and Figure 13–19 on page 98). Do not touch the filter surfaces.
4. Remove the filter spring by unscrewing the four (4) spring position holding screws (Figure 13–20 and Figure 13–21 on page 99).

Caution Do not touch the filter glass surfaces with your bare hands. ▲

Caution The magnet in the middle of the filter wheel attracts both the screwdriver and the screws. Make sure the screwdriver or the screws do not scratch the filters. ▲

Figure 13–19. Removing the filter wheel

Figure 13–20. Removing the spring position holding screws
Maintenance

Adding individual filters to the filter wheel

Figure 13–21. Filter wheel parts

Figure 13–22. Individual filter showing the arrow

Figure 13–23. Inserting a filter into the next free position in the filter wheel
5. Insert a new filter or an additional optional filter into the next free position in the filter wheel (Figure 13–23 on page 99). When inserting the filter, the arrow must be pointing upwards as in Figure 13–23 on page 99. The wavelength of the filter is marked on the filter package as well as on the filter side, that is, the three digits before the last digit of the number sequence: xxxxx NNNx, where NNN is the wavelength. The filter positions are marked on the other side of the filter wheel. The filter wheel has at present three filters factory installed (Table 13–14).

Note Do not change the positions of the factory or earlier installed filters. Insert the optional filters into filter wheel positions after the earlier installed filters.

Table 13–14. Example of the filters in the filter wheel positions 1-8

<table>
<thead>
<tr>
<th>Filter wheel position</th>
<th>Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>405 (example of factory installed filter)</td>
</tr>
<tr>
<td>2</td>
<td>450 (example of factory installed filter)</td>
</tr>
<tr>
<td>3</td>
<td>620 (example of factory installed filter)</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

6. Write down in Table 13–14 the additional filters you have installed into the filter wheel. It is recommended to add the filters in ascending wavelength order.

7. Place the filter spring into its original position and fasten the four screws symmetrically.

8. Slide the filter wheel back into the filter wheel slot with the filter numbers (1-8) facing outwards (Figure 2–7 on page 17). The magnet locking mechanism will automatically lock the wheel in the correct position. Refer to “Installing the filter wheel” on page 16.

9. Close the lamp and filter wheel chamber cover.

10. Switch the instrument ON.
11. Add the filters to the internal software’s general instrument parameters. These parameters are set in the Settings menu. Refer to “Settings menu” on page 58 and Table 13–14.

Note The measurement results will be incorrect, if the filter parameters differ from the actual filters in the filter wheel. ▲

Now the filters are ready for use.

Changing the lamp

To replace the lamp that has burnt out, follow these steps:

Caution Only use the lamp approved by the supplier: Cat. no. 1410101, Lamp, quartz-halogen lamp (Osram 64222, 6V/10W). ▲

1. Turn the power OFF and unplug the instrument.

2. Open the lamp and filter wheel chamber cover.

Warning If the instrument has been in use and you need to replace a burned lamp, the lamp and its surroundings may be very hot. Wait for the lamp to cool down before replacing it. ▲

Caution When handling the lamp, do not touch any other mechanical or electronic part. ▲

3. Turn aside the two clamps, which keep the lamp in place (Figure 13–24 on page 102 and Figure 13–25 on page 102).

4. Lift the lamp up with the terminal socket.

5. Loosen the two screws of the terminal socket and pull the lamp from the terminal socket.
Caution Do not touch the reflective surface of the new lamp or the bulb itself.

6. Refit the terminal socket to the contacts of the new lamp approved by the manufacturer (OSRAM 64222, 6V/10W).

7. Tighten the screws of the terminal socket and put the new lamp in place.
Note Place the lamp and terminal socket into the correct position. Refer to Figure 13–25 on page 102. ▲

8. Turn the two clamps in place to lock the lamp into position.

9. Close the lamp and filter wheel chamber cover.

10. Plug in the instrument and switch the power ON.

Refitting the transport lock

When you relocate the instrument or ship it for service, make sure you refit the transport lock.

To refit the transport lock, follow these steps:

1. The instrument has to be powered ON.

2. Press the PLATE in/out button so that the plate carrier goes in.

3. Switch the power OFF.

4. Open the lamp and filter wheel chamber cover.

5. Push the transport lock bar through the hole in Figure 13–26 into the hole in the measurement head.

Figure 13–26. Refitting the transport lock bar into the measurement head
6. Push the transport lock bar in as far as possible (Figure 13–26).

7. Fasten the transport lock bar and tag clockwise using the Allen key supplied (Figure 13–27). Ensure that the transport lock bar is completely tightened.

![Figure 13–27. Fastening the transport lock](image)

8. Close the lamp and filter wheel chamber cover.

The transport lock bar and tag are now refitted (Figure 13–28).

![Figure 13–28. Transport lock bar and tag refitted](image)
A system log, which includes a short summary of the use, maintenance procedures, error messages and other information about the use of the system can be very useful in properly maintaining the system. Refer to Appendix A: “System Log”. Copy the table as many times as necessary, but leave the blank original inside the user manual.

To pack the Multiskan FC for service, follow the instructions presented below:

- Inform about the use of hazardous materials.
- Remove any microplate before decontamination. Also remove the filter wheel and put it into its transportation box. Decontaminate the instrument.
- Refit the transportation lock. Refer to “Refitting the transport lock” on page 103.
- Close the lamp and filter wheel chamber cover and the measurement chamber door.
- Pack the instrument according to the packing instructions.
- Use the original packaging for shipping.
- Enclose a dated and signed “Certificate of Decontamination” (see Appendix B) both inside and attached to the outside of the package, in which you return your instrument (or other items).
- Enclose the return authorization number (RGA) given by your local Thermo Fisher Scientific representative.
- Indicate the fault after you have been in touch with your local Thermo Fisher Scientific representative or the Thermo Fisher Scientific technical service department.

If the Multiskan FC is exposed to potentially infectious chemical samples, toxic or corrosive chemicals or radioactive chemicals, waste management of the complete instrument must be carried out to ensure that there is no risk of contamination.

Warning Decontaminate the instrument before disposal. Refer to “Decontamination procedure” on page 96. ▲

Follow laboratory and country-specific procedures for biohazardous or radioactive waste disposal.
Warning The used lithium (Li) battery is regulated waste and must be disposed of according to strict EPA (Environmental Protection Agency) requirements. The Li battery has to be changed by an authorized service technician only. Instructions for changing the Li battery are described in the service manual.

Dispose of the instrument according to the legislation stipulated by the local authorities concerning take-back of electronic equipment and waste. The proposals for the procedures vary by country.

Pollution degree
2 (see “Safety specifications” on page 109)

Method of disposal
- Electronic waste
- Contaminated waste
 (Infectious waste)

WEEE symbol Thermo Fisher Scientific has contracted with one or more recycling/disposal companies in each EU Member State (European Country), and this product should be disposed of or recycled through them. Further information on Thermo Fisher Scientific’s compliance with these Directives, the recyclers in your country, and information on Thermo Scientific products which may assist the detection of substances subject to the RoHS Directive are available at www.thermo.com/WEEERoHS.

Regarding the original packaging and packing materials, use the recycling operators known to you.

For more information, contact your local Thermo Fisher Scientific representative.
Chapter 14
Technical Specifications

General specifications

Thermo Fisher Scientific reserves the right to change any specifications without prior notice as part of our continuous product development program.

Table 14–15. General specifications

<table>
<thead>
<tr>
<th>General specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall dimensions</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Weight</td>
</tr>
<tr>
<td>Operating conditions</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Transportation conditions</td>
</tr>
<tr>
<td>Storage conditions</td>
</tr>
<tr>
<td>Mains power supply</td>
</tr>
<tr>
<td>Power consumption</td>
</tr>
<tr>
<td>Heat dissipation</td>
</tr>
<tr>
<td>Display</td>
</tr>
<tr>
<td>Keypad</td>
</tr>
<tr>
<td>User interface</td>
</tr>
<tr>
<td>Computer interface</td>
</tr>
<tr>
<td>Plate types</td>
</tr>
<tr>
<td>Shaker</td>
</tr>
</tbody>
</table>
Performance specifications

This section provides the performance specifications for the relevant measurement technique and other instrument capabilities.

Table 14–16. Photometry

<table>
<thead>
<tr>
<th>Performance specifications / Photometry</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical system</td>
<td>Quartz-halogen lamp (Osram 64222, 6V/10W), interference filter (in the filter wheel), fiber, fiber end optics, photodetector, signal processing</td>
</tr>
<tr>
<td>Wavelength range</td>
<td>340 – 850 nm</td>
</tr>
<tr>
<td>Filters</td>
<td>8-position filter wheel</td>
</tr>
<tr>
<td></td>
<td>The filters are optional. The standard filters are: 405 nm; 450 nm, and 620 nm. Additional filters can be ordered separately.</td>
</tr>
<tr>
<td>Half-bandwidth of filters</td>
<td>3 – 9 nm</td>
</tr>
<tr>
<td>Wavelength accuracy</td>
<td>± 2 nm</td>
</tr>
<tr>
<td>Detector</td>
<td>One silicon photodetector</td>
</tr>
<tr>
<td>Linearity (96-well plate)</td>
<td>0 – 4 Abs, ±2%, normal mode</td>
</tr>
<tr>
<td>(405 nm)</td>
<td>0 – 3 Abs, ±2%, fast mode</td>
</tr>
<tr>
<td>Linearity (384-well plate)</td>
<td>0 – 3 Abs, ±2% with normal mode</td>
</tr>
<tr>
<td>(405 nm)</td>
<td>0 – 2.5 Abs, ±2% with fast mode</td>
</tr>
<tr>
<td>Measurement range</td>
<td>0 – 6 Abs</td>
</tr>
<tr>
<td>Absorbance resolution</td>
<td>0.001 Abs</td>
</tr>
<tr>
<td>Accuracy (405 nm, normal mode)</td>
<td>± 1% (0.3 – 3 Abs)</td>
</tr>
<tr>
<td></td>
<td>± 2% (3 – 4 Abs)</td>
</tr>
<tr>
<td>Precision (405 nm, normal mode)</td>
<td>CV ≤ 0.2% (0.3 – 3 Abs)</td>
</tr>
<tr>
<td></td>
<td>CV ≤ 1.0% (3 – 4 Abs)</td>
</tr>
<tr>
<td>Startup time</td>
<td>Approx. 30 s</td>
</tr>
<tr>
<td>Measurement time</td>
<td>6 s (96-well plate), fast mode</td>
</tr>
<tr>
<td></td>
<td>12 s (96-well plate), normal mode</td>
</tr>
<tr>
<td></td>
<td>15 s (96-well plate), fast mode, dual wavelength</td>
</tr>
<tr>
<td></td>
<td>11 s (384-well plate), fast mode</td>
</tr>
<tr>
<td></td>
<td>33 s (384-well plate), normal mode</td>
</tr>
<tr>
<td></td>
<td>25 s (384-well plate), fast mode, dual wavelength</td>
</tr>
<tr>
<td>Long-term stability</td>
<td>Instrument is stable due to autoblanking procedure.</td>
</tr>
</tbody>
</table>
This section describes the safety specifications for the Multiskan FC instrument.

Multiskan FC bears the following markings:

- Type 357
- 100 – 240 Vac, 50/60 Hz, 100 VA max.
- CE mark
- CSA monogram

Multiskan FC conforms to the following requirements:

- 2006/95/EC (Low Voltage Directive)
- FCC Part 15, Subpart B/Class B (July 2004)
- 2002/96/EC (Waste of Electrical and Electronic Equipment)

Safety performance:

- EN 61010-1:2001 (Ed. 2), including US and CA National differences
- EN 61010-2-010:2003 (Ed. 2)
- EN 61010-2-101:2002 Particular Requirements for In Vitro Diagnostic (IVD) Medical Equipment

The safety specifications are also met under the following environmental conditions in addition to or in excess of those stated in the operating conditions:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>Up to 2000 m</td>
</tr>
<tr>
<td>Temperature</td>
<td>+5°C to +40°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>Maximum relative humidity 80% for temperatures up to 31°C decreasing linearly to 50% relative humidity at 40°C</td>
</tr>
<tr>
<td>Mains supply fluctuations</td>
<td>± 10% from nominal</td>
</tr>
<tr>
<td>Installation category</td>
<td>II according to IEC 60664-1 (see Note 1)</td>
</tr>
<tr>
<td>(overvoltage category)</td>
<td></td>
</tr>
<tr>
<td>Pollution degree</td>
<td>2 according to IEC 60664-1 (see Note 2)</td>
</tr>
</tbody>
</table>
Technical Specifications

Safety specifications

Note 1) The *installation category* (overvoltage category) defines the level of transient overvoltage which the instrument is designed to withstand safely. It depends on the nature of the electricity supply and its overvoltage protection means. For example, in CAT II which is the category used for instruments in installations supplied from a supply comparable to public mains, such as hospital and research laboratories and most industrial laboratories, the expected transient overvoltage is 2500 V for a 230 V supply and 1500 V for a 120 V supply.

2) The *pollution degree* describes the amount of conductive pollution present in the operating environment. Pollution degree 2 assumes that normally only nonconductive pollution, such as dust, occurs with the exception of occasional conductivity caused by condensation.

EMC performance:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 61000-6-3:2001</td>
<td>Generic standards – Emission standard for residential, commercial and light-industrial environments</td>
</tr>
<tr>
<td>EN 61000-6-1:2007</td>
<td>Generic standards – Immunity standard for residential, commercial and light-industrial environments</td>
</tr>
<tr>
<td>EN 61326-1:2006</td>
<td>Product family standard – Electrical equipment for measurement, control and laboratory use</td>
</tr>
<tr>
<td>EN 61326-2-6:2006</td>
<td>Product family standard – Electrical equipment for measurement, control and laboratory use; In vitro diagnostic (IVD) medical equipment</td>
</tr>
</tbody>
</table>

Test standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Performance limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 61000-3-2: 2000 + A2:2005</td>
<td>Class A</td>
</tr>
<tr>
<td>ANSI C63.4:2003</td>
<td>Class B, 450 kHz – 1 GHz</td>
</tr>
<tr>
<td>EN 61000-4-3:2002 + A1:2002</td>
<td>3 V/m, 80 MHz – 2.7 GHz, Criteria A</td>
</tr>
<tr>
<td>EN 61000-4-4:2004</td>
<td>1 kV, Criteria B</td>
</tr>
<tr>
<td>EN 61000-4-5:1995 + A1:2001</td>
<td>2 kV line to ground, 1 kV line to line, Criteria B</td>
</tr>
<tr>
<td>EN 61000-4-6:1996 + A1:2001</td>
<td>3 Vrms, 150 kHz – 80 MHz, Criteria A</td>
</tr>
<tr>
<td>EN 61000-4-8:1993 + A1:2001</td>
<td>3 A/m, Criteria A</td>
</tr>
<tr>
<td>EN 61000-4-11:1994 + A1:2001</td>
<td>30% / 500 ms, Criteria B 60% / 100 ms, Criteria B 100% / 10 ms, Criteria C 100% / 20 ms, Criteria C 100% / 5000 ms, Criteria C</td>
</tr>
</tbody>
</table>
Chapter 15
Troubleshooting Guide

Note Do not use the instrument if it appears that it does not function properly. ▲

Note The instrument does not verify the logic flow of the received commands. ▲

Error and warning codes

When an error is detected, the current operation is terminated. After an error, it is best to abort the current run and restart from the beginning after the problem is fixed. The error (Table 15–18) and warning codes (Table 15–19) that may appear in SkanIt Software for Multiskan FC are presented below.

Table 15–18. Error codes reported

<table>
<thead>
<tr>
<th>Code</th>
<th>Explanation</th>
<th>Suggested action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>The command was executed successfully.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The instrument did not recognize the command it received.</td>
<td>Contact the PC software vendor.</td>
</tr>
<tr>
<td>3</td>
<td>The arguments of the received command are not valid.</td>
<td>Contact the PC software vendor.</td>
</tr>
<tr>
<td>4</td>
<td>Plate positioning error.</td>
<td>Check that there is nothing preventing free plate movement. Contact service.</td>
</tr>
<tr>
<td>5</td>
<td>Measure head positioning error.</td>
<td>Check that there is nothing preventing free measure head movement. Contact service.</td>
</tr>
<tr>
<td>6</td>
<td>Filter wheel positioning error.</td>
<td>Check that the filter wheel is in place. Contact service.</td>
</tr>
<tr>
<td>7</td>
<td>AD converter offset voltage is too high.</td>
<td>Contact service.</td>
</tr>
<tr>
<td>8</td>
<td>AD converter noise level is too high.</td>
<td>Contact service.</td>
</tr>
<tr>
<td>9</td>
<td>Lamp failure.</td>
<td>Replace the lamp. It is also possible to get this error if either one of the measure head or plate motors has lost steps so that the position is wrong.</td>
</tr>
<tr>
<td>10</td>
<td>Non-volatile parameters lost.</td>
<td>Contact service.</td>
</tr>
<tr>
<td>11</td>
<td>Attempt to set the instrument serial number when it already has been set.</td>
<td>Do not try to set the instrument serial number.</td>
</tr>
<tr>
<td>12</td>
<td>Not enough memory for a new user-defined parameter.</td>
<td>Using the PUT command, delete some unused user</td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Code</th>
<th>Explanation</th>
<th>Suggested action</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>This error may be reported in response to a PUT command.</td>
<td>The internal memory is full. Take a backup by exporting the protocols/runs. Refer to Chapter 9: “Printing, Exporting and Importing”. Release space from the internal memory by deleting protocols/runs from the internal memory.</td>
</tr>
<tr>
<td>13</td>
<td>Such an error during startup, that the execution of the MEA and SCA commands is precluded.</td>
<td>When you connect to the instrument with the VER command, the instrument should not report any error in the response. If it does, try to eliminate the error. If you are unable to eliminate the error, contact service.</td>
</tr>
<tr>
<td>14</td>
<td>The distance between plate wells is too short for scan measurement.</td>
<td>Check the parameters of the PLA command used.</td>
</tr>
<tr>
<td>15</td>
<td>The sampling time for a single result is too long for scan measurement. The plate cannot be moved as slowly as the sampling time requires.</td>
<td>Use the MEA command instead of the SCA command. Use a shorter sampling time in the MPA command.</td>
</tr>
<tr>
<td>16</td>
<td>Failed to adjust a suitable lamp intensity for a filter.</td>
<td>Check that there actually is a filter in all used filter positions. If the error persists, contact service.</td>
</tr>
<tr>
<td>17</td>
<td>Too high dark signal level. The dark level is checked once for each measured plate row/column.</td>
<td>This error may also be caused by a measure head or plate position error – see errors 4 and 5. Contact service.</td>
</tr>
<tr>
<td>18</td>
<td>Measure signal saturation.</td>
<td>Contact service.</td>
</tr>
<tr>
<td>19</td>
<td>No filters defined.</td>
<td>Define at least one filter you are using.</td>
</tr>
<tr>
<td>20</td>
<td>The USB memory stick/printer interface is not working.</td>
<td>Contact service.</td>
</tr>
<tr>
<td>21</td>
<td>The USB memory stick/printer interface firmware is corrupted.</td>
<td>Contact service.</td>
</tr>
<tr>
<td>22</td>
<td>XY table position calibration failed. This may be reported after startup.</td>
<td>Contact service.</td>
</tr>
<tr>
<td>23</td>
<td>Command parser optimization failure.</td>
<td>You should never see this error. This is not fatal – the instrument still works but command parsing is a bit slower. Contact service.</td>
</tr>
<tr>
<td>24</td>
<td>Temperature reference is out of limits. Incubation is not available if this error is reported.</td>
<td>Contact service.</td>
</tr>
<tr>
<td>25</td>
<td>Parameters memory not found.</td>
<td>Contact service.</td>
</tr>
<tr>
<td>26</td>
<td>Parameters memory erase failure.</td>
<td>Contact service.</td>
</tr>
<tr>
<td>27</td>
<td>Parameters memory write failure.</td>
<td>Contact service.</td>
</tr>
<tr>
<td>28</td>
<td>Temperature is not changing.</td>
<td>Use a at least a 4°C higher incubation temperature than the environmental temperature. This applies to both the protocol and startup temperature. Contact service.</td>
</tr>
<tr>
<td>29</td>
<td>One or more heaters not ok.</td>
<td>Contact service.</td>
</tr>
<tr>
<td>50</td>
<td>File open error. File not found.</td>
<td>Contact service.</td>
</tr>
<tr>
<td>51</td>
<td>Filter 1 not selected in measure parameters.</td>
<td>Select filter 1.</td>
</tr>
</tbody>
</table>

Continued
Cont.

<table>
<thead>
<tr>
<th>Code</th>
<th>Explanation</th>
<th>Suggested action</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>Filter information in the protocol does not match the filter wheel.</td>
<td>Edit the protocol or add the correct filter to the filter wheel.</td>
</tr>
<tr>
<td>53</td>
<td>The file already exists.</td>
<td>Save with another file name.</td>
</tr>
<tr>
<td>54</td>
<td>The file does not exist.</td>
<td>Contact service.</td>
</tr>
<tr>
<td>55</td>
<td>The media is full.</td>
<td>You have to delete some protocols or runs. If “Defragmenting file system” messages start to appear on the display, you should already at this stage make more space by deleting some protocols or runs.</td>
</tr>
<tr>
<td>56</td>
<td>End of file.</td>
<td>Contact service.</td>
</tr>
<tr>
<td>57</td>
<td>Other file error (none of the previous).</td>
<td>Contact service.</td>
</tr>
<tr>
<td>58</td>
<td>Firmware update aborted by user.</td>
<td>Contact service.</td>
</tr>
<tr>
<td>59</td>
<td>Printer not attached.</td>
<td>Connect the external printer.</td>
</tr>
<tr>
<td>60</td>
<td>The printer is out of paper.</td>
<td>Add paper to the printer.</td>
</tr>
<tr>
<td>61</td>
<td>Printing error.</td>
<td>Retry and if the error persists, contact service.</td>
</tr>
</tbody>
</table>

Table 15–19. Warning codes reported

<table>
<thead>
<tr>
<th>Code</th>
<th>Explanation</th>
<th>Suggested action</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Unable to comply with the defined kinetic interval.</td>
<td>The minimum timing depends on the combination of measure parameters, plate movement parameters, number of wavelengths and number of measured wells.</td>
</tr>
<tr>
<td>101</td>
<td>The timer referenced in the WAI timer command is not (anymore) running.</td>
<td>Make sure you started the timer with a long enough wait time.</td>
</tr>
<tr>
<td>102</td>
<td>Temperature is not changing.</td>
<td>Please note that the cooling of the incubation chamber takes time. If you get the warning of “Temperature is not changing”, it means that the incubator chamber is cooling slowly. It is possible to start the run despite of the warning message in case the incubation temperature is not critical for the application.</td>
</tr>
</tbody>
</table>

Warnings and cautions

This instrument is designed to provide full user protection. When correctly installed, operated and maintained, it will present no hazard to the user.

The following recommendations are given for added user safety.

Electrical

Ensure that the power supply cable supplied with the unit is always used. If a correct type of mains cable is not provided, use only cables certified by the local authorities.
The power plug should only be inserted into a socket outlet provided with a protective ground contact. Never use an extension cable without a protective ground wire.

Warning Only authorized technical service personnel are allowed to open the instrument. Disconnect the instrument from all voltage sources by disconnecting the power supply cable before opening it.

The same precautions applicable when using any electrical equipment should naturally be observed with this instrument.

Warning Do not touch switches or electrical outlets with wet hands.

Switch the instrument OFF before disconnecting it from the mains supply.

Defects and abnormal stresses

Warning If the instrument is not functioning properly, it may create electromagnetic perturbation, which could impair the operation of other devices or equipment in the usual environment.

Whenever it is likely that the protection has been impaired, the instrument should be made inoperative and be secured against any unintended operation. Contact authorized technical service immediately.

The protection is likely to be impaired if, for example, the instrument:

- Shows any visible damage
- Fails to perform the intended functions
- Has been subjected to prolonged storage under unfavorable conditions
- Has been subjected to severe transport stresses.
Chapter 16
Ordering Information

Contact your local Thermo Fisher Scientific representative for ordering and service information.

Table 16–20. Codes for filters

<table>
<thead>
<tr>
<th>Code</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1423405</td>
<td>Optical filter 340 nm</td>
</tr>
<tr>
<td>1423755</td>
<td>Optical filter 375 nm</td>
</tr>
<tr>
<td>1424055</td>
<td>Optical filter 405 nm</td>
</tr>
<tr>
<td>1424145</td>
<td>Optical filter 414 nm</td>
</tr>
<tr>
<td>1424505</td>
<td>Optical filter 450 nm</td>
</tr>
<tr>
<td>1424925</td>
<td>Optical filter 492 nm</td>
</tr>
<tr>
<td>1425205</td>
<td>Optical filter 520 nm</td>
</tr>
<tr>
<td>1425305</td>
<td>Optical filter 530 nm</td>
</tr>
<tr>
<td>1425405</td>
<td>Optical filter 540 nm</td>
</tr>
<tr>
<td>1425505</td>
<td>Optical filter 550 nm</td>
</tr>
<tr>
<td>1425605</td>
<td>Optical filter 560 nm</td>
</tr>
<tr>
<td>1425705</td>
<td>Optical filter 570 nm</td>
</tr>
<tr>
<td>1425955</td>
<td>Optical filter 595 nm</td>
</tr>
<tr>
<td>1426205</td>
<td>Optical filter 620 nm</td>
</tr>
<tr>
<td>1426305</td>
<td>Optical filter 630 nm</td>
</tr>
<tr>
<td>1426505</td>
<td>Optical filter 650 nm</td>
</tr>
<tr>
<td>1426905</td>
<td>Optical filter 690 nm</td>
</tr>
<tr>
<td>1427405</td>
<td>Optical filter 740 nm</td>
</tr>
<tr>
<td>1427505</td>
<td>Optical filter 750 nm</td>
</tr>
</tbody>
</table>
List of spare parts and accessories

<table>
<thead>
<tr>
<th>Code</th>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>N07710</td>
<td>Multiskan FC User Manual</td>
<td>1</td>
</tr>
<tr>
<td>N07713</td>
<td>SkanIt Software for Multiskan FC User Manual</td>
<td>1</td>
</tr>
<tr>
<td>5187100</td>
<td>SkanIt Software for Multiskan FC, Research Edition</td>
<td>1</td>
</tr>
<tr>
<td>1410101</td>
<td>Halogen lamp 6V/10W</td>
<td>1</td>
</tr>
<tr>
<td>N04001</td>
<td>USB A-B device cable *</td>
<td>1</td>
</tr>
</tbody>
</table>

* longer USB cables available from PC stores

List of Thermo Scientific plates

<table>
<thead>
<tr>
<th>Code</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>9503060</td>
<td>MultiFrame</td>
</tr>
<tr>
<td>3355</td>
<td>Flat, 1 B, Medium Binding</td>
</tr>
<tr>
<td>3455</td>
<td>Flat, 2 HB, High Binding</td>
</tr>
<tr>
<td>3855</td>
<td>Flat, 4 HBX, High Binding Extra</td>
</tr>
</tbody>
</table>

Immulon Plates, 96 Well

<table>
<thead>
<tr>
<th>Code</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>9502227</td>
<td>Flat, Universal Binding</td>
</tr>
<tr>
<td>95029330</td>
<td>Flat, Enhanced Binding</td>
</tr>
<tr>
<td>95029780</td>
<td>Flat, Universal Binding, Sterile + Lid</td>
</tr>
</tbody>
</table>

Microtiter 96 Well Plates

<table>
<thead>
<tr>
<th>Code</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>95040000</td>
<td>Round, 384 Plate</td>
</tr>
<tr>
<td>8555</td>
<td>Immulon 1 B Plate, square well</td>
</tr>
<tr>
<td>8755</td>
<td>Immulon 4 HBX, square well</td>
</tr>
</tbody>
</table>

Immulon Strip Assemblies (in frames)

<table>
<thead>
<tr>
<th>Code</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>6310</td>
<td>Flat, 1 B, Medium Binding, 1 x 12</td>
</tr>
<tr>
<td>6505</td>
<td>Flat, 1 B, Medium Binding, 2 x 8</td>
</tr>
<tr>
<td>6309</td>
<td>Flat, 2 HB, High Binding, 1 x 12</td>
</tr>
<tr>
<td>6506</td>
<td>Flat, 2 HB, High Binding, 2 x 8</td>
</tr>
<tr>
<td>6405</td>
<td>Flat, 4 HBX, High Binding Extra, 1 x 12</td>
</tr>
<tr>
<td>6508</td>
<td>Flat, 4 HBX, High Binding Extra, 2 x 8</td>
</tr>
</tbody>
</table>

Immulon Strips

<table>
<thead>
<tr>
<th>Code</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>6301</td>
<td>Flat, 1 B, Medium Binding, 1 x 12</td>
</tr>
<tr>
<td>6302</td>
<td>Flat, 2 HB, High Binding, 1 x 12</td>
</tr>
<tr>
<td>6404</td>
<td>Flat, 4 HBX, High Binding Extra, 1 x 12</td>
</tr>
</tbody>
</table>

Microtiter Breakable Strip Assemblies (in frames)

<table>
<thead>
<tr>
<th>Code</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>95029390</td>
<td>Flat, Universal Binding, 1 x 8</td>
</tr>
</tbody>
</table>

Continued
Verification tools

<table>
<thead>
<tr>
<th>Code</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>95029180</td>
<td>Flat, Enhanced Binding, 1 x 8</td>
</tr>
<tr>
<td>95029350</td>
<td>Flat, Universal Binding, 1 x 8</td>
</tr>
<tr>
<td>95029100</td>
<td>Flat, Enhanced Binding, 1 x 8</td>
</tr>
</tbody>
</table>

Table 16–23. Codes for verification tools

<table>
<thead>
<tr>
<th>Code</th>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>24072800</td>
<td>Multiskan Verification Plate</td>
<td>1</td>
</tr>
</tbody>
</table>
Appendix A
System Log

Instrument name/number:

<table>
<thead>
<tr>
<th>User</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PHOTOPOIABLE
Appendix B
Certificate of Decontamination

Name: __

Address: ___

Tel./Fax: __

Name: __ Serial no.: __________________________

A) I confirm that the returned items have not been contaminated by body fluids, toxic, carcinogenic or radioactive materials or any other hazardous materials.

B) I confirm that the returned items have been decontaminated and can be handled without exposing the personnel to health hazards.

Materials used in the unit: Chemicals + Biological • Radioactive *)

Specific information about contaminants:

__

Decontamination procedure¹:

__

Date and place: ___

Signature: ___

Name (block capitals): ___

*) The signature of a Radiation Safety Officer is also required when the unit has been used with radioactive materials.

This unit is certified by the undersigned to be free of radioactive contamination.

Date and place: ___

Signature: ___

Name (block capitals): ___

PHOTOCOPIABLE

¹ Please include decontaminating solution used.
Glossary

absorbance (optical density) A logarithmic function of the transmission of a wavelength of light through a liquid. $\log\left(\frac{I}{I_0}\right)$ dimension [Abs]

decontamination Removal or neutralization of radiologic, bacteriological, chemical or other contamination.

disinfection The destruction of pathogenic bacteria, usually with an antiseptic chemical or disinfectant.

EIA Enzyme immunoassay. An immunoassay using a color-changing enzyme-substrate system for indicating results. A diagnostic test method to measure or detect a substance using antibody-antigen reactions.

ELISA Abbreviation for enzyme-linked immunosorbent assay.

error message Indication that an error has been detected.

fast mode The detector moves over the well without stopping.

filter An optically wavelength selective component.

initialization tests So-called self-tests, which are carried out before operation to ascertain that the necessary instrument adjustments have been carried out.

kinetic measurement Measurement over a time period at certain intervals.

normal mode The detector stops over the measured well.

optical density (absorbance) $\log\left(\frac{I}{I_0}\right)$ dimension [O.D.]

photometer A device measuring absorbance or optical density.

photometry The measurement of the properties of light, particularly (luminous) intensity.

self-tests Initialization tests and adjustments that the instrument performs before operation as well as autocalibration.

single measurement Synonym to endpoint measurement/assay/method. The measurement is only done with a single reading.

transmittance The ratio of transmitted (I) and incident light (I_0), $\frac{I}{I_0}$.

USB Universal serial bus.
Index

A
absorbance, 11, 12, 33, 40, 41, 50, 55, 73, 75, 108, 123
accessories, 13, 116
accuracy, 2, 94, 108
adding a QC rule, 54, 75
adding individual filters to the filter wheel, 97
application, 2, 5, 12
autoblanking, 23, 108
autocalibration, 23, 123
average rate, 33, 38, 39, 40

B
Baseline readings, 38, 45

C
calculated results, 29, 54, 56, 79, 81, 82
calculation parameters, 29, 31, 35, 36, 38, 47, 48, 51, 54, 55, 68, 71, 72, 73, 75
calibration, 29, 49, 50, 54, 56, 57, 79, 112
curve, 29, 56, 57
Change, 38, 45, 93
Change type, 38, 45
changing the lamp, 93, 101, 102
changing the language, 87
cleaning the filters, 95
connecting to a computer, 18
connecting to a printer, 18
cubic spline, 48, 49
curve fit, 35, 39, 41, 47, 48, 57, 72
cutoff, 51, 52

d
decontamination, 85, 93, 95, 96, 97, 105, 121, 123
Certificate of, 97, 105, 121
procedure, 85, 93, 95, 96, 97, 105, 121
detector, 23, 108, 123
disposal of instrument, 105
disposal of materials, 96

e
enabling QC, 54, 75
endpoint measurement, 26, 123
environmental requirements, 14
error, 19, 105, 111, 112, 113, 123
codes, 111
messages, 19, 105, 123
exporting a protocol, 82
exporting results or protocols, 55, 56, 57, 80, 81, 82, 83

F
factor, 47, 48, 49, 50
filter wheel, 14, 16, 17, 19, 23, 33, 88, 89, 90, 93, 97, 98, 99, 100, 101, 103, 104, 105, 108, 111, 112
cubic spline, 48, 49
glossary, 123

H
half-bandwidth, 108
header, 59, 90
how to decontaminate the instrument, 85, 93, 95, 96, 97, 99, 105, 121
how to install the Multiskan FC, 13, 14, 18, 19, 94, 109
how to maintain the instrument, 62, 64, 93
how to pack for service, 13, 105
how to shut down, 85, 93
how to switch on, 18
how to unpack, 13

I
Ignore from beginning, 38, 41, 43, 44, 45, 46
Ignore from end, 38, 41, 43, 44, 45, 46
importing a protocol, 83
importing results or protocols, 82, 83
incubation, 11, 24, 29, 30, 34, 35, 65, 66, 67, 112
parameters, 29, 30, 34, 67
incubator, 11, 24, 29, 34, 66, 87, 109, 115
installation, 3, 13, 14, 16, 18, 19, 33, 100, 109, 110
category, 109, 110
installing the filter wheel, 16, 100
instrument settings, 58, 90, 101
intended use, 3, 12
internal memory, 24
interpretation, 29, 35, 50, 51, 52, 53, 65, 73, 74, 79
parameters, 65
introducing a filter to the internal software, 33, 89

K
keypad, 19, 25, 53, 54, 94, 107
keys, 25, 26, 29, 53, 54, 61, 62, 63, 66, 67, 69, 70, 73, 74,
75, 76, 80, 87, 89, 107
kinetic, 24, 26, 33, 34, 35, 37, 38, 39, 40, 41, 43, 51, 52, 54,
56, 71, 79, 113, 123
calculations, 35, 37, 38, 39, 40, 71
measurements, 24, 26, 34, 37, 123
rate, 38, 41, 43
kinetic measurements, 24, 26, 34, 37, 123
Kinetic rate, 38, 41, 43

L
lamp, 14, 17, 23, 93, 97, 100, 101, 102, 103, 104, 105, 108,
111, 112, 116
lamp and filter wheel chamber, 14, 17, 97, 100, 101, 103,
104, 105
cover, 14, 17, 97, 100, 101, 103, 104, 105
layout, 29, 35, 36, 47, 50, 54, 56
light source, 14, 17, 23, 93, 97, 100, 101, 102, 103, 104,
105, 108, 111, 112, 116
limit, 35, 44, 51, 52, 73
linear regression, 40, 48, 49, 72
linear shaking, 107

M
main parameters, 29, 30, 62, 64, 65
maintaining a system log, 93, 105
maintenance, 3, 62, 64, 93, 94, 105
checklist, 93
maximum of well, 38, 40, 46
maximum rate, 38, 40, 41, 42, 43, 44
measurement, 29, 30, 31, 33, 34, 40, 41, 43, 45, 46, 56, 65
chamber, 19, 85, 97, 105
chamber door, 19, 85, 97, 105
mode, 33
parameters, 33, 40
technique, 108
time, 33, 108
measuring, 2, 12, 123
memory stick, 18, 22, 61, 62, 82, 112
menu, 25, 26, 29, 35, 54, 58
layout, 29
Multiskan Verification Plate, 93, 117

N
navigating, 25
normal mode, 33, 108, 123

O
opening a new protocol, 31, 65
optical, 2, 17, 23, 93, 94, 108, 115, 123
density, 123
system, 23, 93, 94, 108
ordering information, 3, 115

P
packing, 13, 105, 106
instructions, 105
list, 13
materials, 106
photometric measurement, 3
photometry, 108, 123
plate, 12, 107, 116, 117
format parameters, 32
in/out switch, 27, 103
layout, 29, 35, 36, 37, 47, 50, 56, 57, 65, 68, 71
type, 107
point to point, 48, 50
precalculations, 39, 40, 65, 71, 72
precision, 108
preprocessing parameters, 37, 38, 52
printer, 18, 29, 58, 59, 61, 62, 81, 82, 87, 90, 112, 113
printing, 18, 29, 58, 59, 61, 62, 81, 90, 113
printing or exporting data, 81
program overview, 29
programming, 33, 34, 37, 53, 65, 66, 68, 71, 72, 73
a plate layout, 37, 68
a wavelength, 33, 65
an interpretation, 53, 73
calculations, 71, 72
incubation, 66
precalculations, 71
shaking, 34, 66
protocol, 3, 18, 20, 26, 27, 29, 30, 31, 33, 35, 36, 39, 48,
50, 51, 53, 54, 55, 56, 58, 61, 62, 63, 64, 65, 68, 73, 75,
76, 77, 79, 82, 83, 84, 90, 112

Q
quality control, 12, 29, 35, 53, 54, 57, 75, 79
parameters, 53, 75
quantitative assay, 51

R
raw data, 29, 40, 54, 55, 79
Reaction, 38, 42, 44, 45
Readings from, 38, 45
ready-made protocols, 26, 61, 62
refitting the transport lock, 103, 105
releasing the transport lock, 14
remote control, 19, 27
result handling, 55, 71
results in list format, 29, 57

S
saving a new (active) protocol, 65, 76
service, 13, 23, 91, 93, 94, 103, 105, 106, 111, 112, 113,
114, 115
pack for, 13, 105
setting the date, 87
Settings parameters, 59
shaker, 24, 34, 107
shaking, 11, 24, 29, 30, 34, 65, 66, 107
 speed, 24, 34, 66
shutdown, 85, 93
single measurement, 26, 123
source data, 40, 51, 52, 73
spare parts, 116
specifications, 3, 106, 107, 108, 109
 general, 107
 performance, 108, 109
 safety, 106, 109
 speed, 24, 26, 34, 66
starting a ready-made protocol, 61, 62

from the list, 62
 with the quick keys (F1-F3), 61
startup, 18, 23, 29, 58, 59, 87, 90, 101, 108, 112
stored curve, 47, 50, 56
switching on, 18
symbols, 4
system, 2, 5, 12, 23, 29, 43, 58, 59, 87, 88, 93, 94, 105, 108,
113, 115, 119, 123
 log, 105
 settings, 87
System, 29, 59, 87, 105, 115, 119
system log, 93, 105

T
time to change, 38, 40, 44
time to maximum, 38, 40, 43, 46
time to maximum rate, 38, 40, 43
transmittance, 123
transport, 13, 14, 15, 16, 97, 103, 104, 105, 107, 114
 damage, 13
 package, 13, 97
troubleshooting, 111
type label, 4, 94

U
uniformity, 109
USB, 18, 19, 22, 61, 62, 81, 82, 83, 107, 112, 116, 123
 memory stick, 18, 22, 61, 62, 81, 82, 83, 112
 memory stick port, 22, 81, 82, 83
user interface, 3, 26, 107

V
verification tools, 117
viewing results, 79

W
warm-up time, 109
warning codes, 111, 113
warranty, 13
wavelength, 11, 23, 33, 38, 39, 40, 59, 65, 71, 88, 89, 100,
108, 123
 accuracy, 108
 range, 11, 108
Window, 38, 41, 43, 44, 45